TOS Hash Algorithm
TOS Hash is a cutting-edge cryptographic hash function specifically designed for the TOS Network blockchain. Built on the principle of “Don’t Trust, Verify it”, TOS Hash provides quantum resistance, GPU optimization, and exceptional security properties.
Overview
TOS Hash combines multiple cryptographic techniques to create a robust, future-proof hashing algorithm that supports both traditional CPU mining and GPU-accelerated mining operations.
Key Features
- Quantum Resistant: Built to withstand quantum computer attacks
- GPU Optimized: Designed for efficient GPU mining
- Memory-Hard: Requires significant memory to prevent ASIC dominance
- GPU-Friendly: Optimized for modern GPU architectures
- Progressive Difficulty: Adaptive complexity based on network conditions
- Verifiable: All hash operations are mathematically verifiable
Algorithm Specification
Core Parameters
| Parameter | Value | Description |
|---|---|---|
| Output Size | 256 bits | SHA-256 compatible output |
| Memory Requirement | 2-8 GB | Dynamic based on difficulty |
| Iterations | 1,024-16,384 | Variable based on network state |
| Salt Size | 64 bytes | Random salt for each hash |
| Complexity Factor | 1.0-2.5x | Mining complexity multiplier |
Mathematical Foundation
TOS Hash is based on a modified Argon2 construction with additional mining optimizations:
TOS-Hash(input, salt, difficulty, ai_factor) =
Finalize(
AI-Enhance(
Argon2-Hybrid(input, salt, memory_cost, time_cost),
ai_factor
)
)Core Algorithm Implementation
Basic Hash Function
use sha3::{Sha3_256, Digest};
use argon2::{Argon2, Config};
pub struct TOSHasher {
memory_cost: u32,
time_cost: u32,
parallelism: u32,
ai_factor: f64,
}
impl TOSHasher {
pub fn new(difficulty: u64, ai_factor: f64) -> Self {
// Calculate parameters based on difficulty
let memory_cost = (difficulty / 1000).max(1024) as u32; // Min 1MB
let time_cost = (difficulty / 10000).max(3) as u32; // Min 3 iterations
let parallelism = num_cpus::get() as u32;
Self {
memory_cost,
time_cost,
parallelism,
ai_factor,
}
}
pub fn hash(&self, input: &[u8], salt: &[u8]) -> [u8; 32] {
// Phase 1: Memory-hard hashing with Argon2
let argon2_config = Config {
variant: argon2::Variant::Argon2id,
version: argon2::Version::Version13,
mem_cost: self.memory_cost,
time_cost: self.time_cost,
lanes: self.parallelism,
secret: &[],
ad: &[],
hash_length: 32,
};
let argon2_hash = argon2::hash_raw(input, salt, &argon2_config)
.expect("Argon2 hashing failed");
// Phase 2: AI-enhanced processing
let ai_enhanced = self.ai_enhance(&argon2_hash);
// Phase 3: Final SHA-3 processing
let mut hasher = Sha3_256::new();
hasher.update(&ai_enhanced);
hasher.update(salt);
hasher.update(&self.ai_factor.to_le_bytes());
let result = hasher.finalize();
let mut output = [0u8; 32];
output.copy_from_slice(&result);
output
}
fn ai_enhance(&self, input: &[u8]) -> Vec<u8> {
// AI-enhancement algorithm
let mut enhanced = input.to_vec();
let ai_iterations = (self.ai_factor * 1000.0) as usize;
for i in 0..ai_iterations {
// Simulate GPU-mining complexity
enhanced = self.neural_transform(&enhanced, i);
}
enhanced
}
fn neural_transform(&self, data: &[u8], iteration: usize) -> Vec<u8> {
// Simplified neural network-inspired transformation
let mut output = Vec::with_capacity(data.len());
for (idx, &byte) in data.iter().enumerate() {
let weight = (iteration as u8).wrapping_mul(idx as u8);
let transformed = byte.wrapping_add(weight).wrapping_mul(157); // Prime number
output.push(transformed);
}
// Non-linear activation function
for byte in &mut output {
*byte = if *byte > 127 {
(*byte).wrapping_mul(3)
} else {
(*byte).wrapping_div(2)
};
}
output
}
}Mining Implementation
import hashlib
import numpy as np
from typing import Tuple, List
import time
class TOSMiner:
def __init__(self, difficulty: int, gpu_mining: bool = False):
self.difficulty = difficulty
self.gpu_mining = gpu_mining
self.target = (2 ** 256) // difficulty
def mine_block(self, block_data: bytes, max_nonce: int = 2**32) -> Tuple[int, bytes]:
"""Mine a block using TOS Hash algorithm"""
for nonce in range(max_nonce):
# Prepare mining input
mining_input = block_data + nonce.to_bytes(8, 'little')
salt = self._generate_salt(nonce)
# Calculate TOS Hash
if self.gpu_mining:
hash_result = self._tos_hash_gpu(mining_input, salt)
else:
hash_result = self._tos_hash_standard(mining_input, salt)
# Check if hash meets difficulty target
hash_int = int.from_bytes(hash_result, 'big')
if hash_int < self.target:
return nonce, hash_result
raise ValueError("Failed to find valid nonce")
def _tos_hash_standard(self, input_data: bytes, salt: bytes) -> bytes:
"""Standard TOS Hash implementation"""
# Phase 1: Memory-hard hashing
memory_cost = max(1024, self.difficulty // 1000)
iterations = max(3, self.difficulty // 10000)
# Simulate Argon2-like memory-hard function
state = self._memory_hard_hash(input_data, salt, memory_cost, iterations)
# Phase 2: Final hashing
hasher = hashlib.sha3_256()
hasher.update(state)
hasher.update(salt)
return hasher.digest()
def _tos_hash_ai(self, input_data: bytes, salt: bytes) -> bytes:
"""AI-enhanced TOS Hash implementation"""
# Standard hash first
standard_hash = self._tos_hash_standard(input_data, salt)
# AI enhancement
ai_factor = min(2.5, 1.0 + (self.difficulty / 1000000))
enhanced_hash = self._ai_enhancement(standard_hash, ai_factor)
# Final processing
hasher = hashlib.sha3_256()
hasher.update(enhanced_hash)
hasher.update(b'GPU-MINING')
return hasher.digest()
def _memory_hard_hash(self, data: bytes, salt: bytes, mem_cost: int, iterations: int) -> bytes:
"""Memory-hard hashing function"""
# Initialize memory block
memory_size = mem_cost * 1024 # Convert to bytes
memory_block = bytearray(memory_size)
# Fill initial memory
hasher = hashlib.blake2b()
hasher.update(data)
hasher.update(salt)
initial_hash = hasher.digest()
# Expand to fill memory
for i in range(0, memory_size, 64):
chunk_hasher = hashlib.blake2b()
chunk_hasher.update(initial_hash)
chunk_hasher.update(i.to_bytes(8, 'little'))
chunk_hash = chunk_hasher.digest()
end_idx = min(i + 64, memory_size)
memory_block[i:end_idx] = chunk_hash[:end_idx-i]
# Perform iterations
for iteration in range(iterations):
for i in range(0, memory_size - 64, 64):
# Random access pattern
index = int.from_bytes(memory_block[i:i+8], 'little') % (memory_size // 64)
target_idx = index * 64
# XOR operation
for j in range(64):
if i + j < memory_size and target_idx + j < memory_size:
memory_block[i + j] ^= memory_block[target_idx + j]
# Final hash of memory
final_hasher = hashlib.sha3_256()
final_hasher.update(memory_block)
return final_hasher.digest()
def _ai_enhancement(self, data: bytes, ai_factor: float) -> bytes:
"""AI-enhancement algorithm"""
# Convert to numpy array for processing
data_array = np.frombuffer(data, dtype=np.uint8)
# Simulate neural network processing
enhanced = data_array.astype(np.float32)
# Apply multiple transformation layers
num_layers = int(ai_factor * 3)
for layer in range(num_layers):
# Weight matrix (simplified)
weights = np.random.RandomState(layer).normal(0, 1, (len(enhanced), len(enhanced)))
# Matrix multiplication
enhanced = np.dot(weights, enhanced)
# Activation function (ReLU variant)
enhanced = np.maximum(0.1 * enhanced, enhanced)
# Normalization
enhanced = enhanced / np.max(np.abs(enhanced)) * 255
# Convert back to bytes
result = enhanced.astype(np.uint8).tobytes()
# Ensure output is 32 bytes
hasher = hashlib.sha3_256()
hasher.update(result)
return hasher.digest()
def _generate_salt(self, nonce: int) -> bytes:
"""Generate deterministic salt from nonce"""
salt_hasher = hashlib.sha3_256()
salt_hasher.update(b'TOS-NETWORK-SALT')
salt_hasher.update(nonce.to_bytes(8, 'little'))
salt_hasher.update(self.difficulty.to_bytes(8, 'little'))
return salt_hasher.digest()[:64] # 64-byte saltGPU Mining Optimizations
Parallel Processing
TOS Hash incorporates parallel processing for enhanced GPU mining:
class TOSGPUMiner {
constructor(difficulty) {
this.difficulty = difficulty;
this.complexity = this.calculateComplexity(difficulty);
}
async mineWithGPU(blockData, maxIterations = 1000000) {
const startTime = Date.now();
for (let nonce = 0; nonce < maxIterations; nonce++) {
// Prepare input for GPU processing
const input = this.prepareInput(blockData, nonce);
// Run through GPU processing
const output = await this.processOnGPU(input);
// Validate output
const enhancedHash = this.enhanceWithAI(input, aiOutput);
// Check if result meets difficulty
if (this.meetsTarget(enhancedHash)) {
const solutionTime = Date.now() - startTime;
return {
nonce,
hash: enhancedHash,
aiMetrics: {
modelAccuracy: aiOutput.confidence,
processingTime: solutionTime,
aiComplexity: this.aiComplexity
}
};
}
}
throw new Error('GPU mining failed to find solution');
}
prepareAIInput(blockData, nonce) {
// Convert block data to AI-compatible format
const combined = Buffer.concat([blockData, Buffer.from([nonce])]);
// Normalize to [-1, 1] range for neural network
const normalized = Array.from(combined).map(byte => (byte - 127.5) / 127.5);
// Pad or truncate to fixed size (e.g., 1024 features)
const fixedSize = 1024;
const padded = normalized.slice(0, fixedSize);
while (padded.length < fixedSize) {
padded.push(0);
}
return padded;
}
enhanceWithAI(input, aiOutput) {
// Combine original input with AI predictions
const enhanced = new Uint8Array(32);
for (let i = 0; i < 32; i++) {
const inputByte = Math.floor((input[i] + 1) * 127.5);
const aiPrediction = Math.floor((aiOutput.predictions[i] + 1) * 127.5);
// Weighted combination
const weight = aiOutput.confidence;
enhanced[i] = Math.floor(inputByte * (1 - weight) + aiPrediction * weight);
}
// Final hash
return crypto.subtle.digest('SHA-256', enhanced);
}
calculateAIComplexity(difficulty) {
// Higher difficulty requires more complex AI processing
return Math.min(2.5, 1.0 + Math.log10(difficulty) / 10);
}
meetsTarget(hash) {
const hashInt = BigInt('0x' + Buffer.from(hash).toString('hex'));
const target = BigInt(2) ** BigInt(256) / BigInt(this.difficulty);
return hashInt < target;
}
}Performance Optimization
GPU Acceleration
// CUDA implementation for GPU mining
__global__ void tos_hash_kernel(
uint8_t* input_data,
uint8_t* output_hashes,
uint32_t* nonces,
uint64_t difficulty,
uint32_t batch_size
) {
uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batch_size) return;
// Local memory for each thread
uint8_t local_memory[2048];
uint8_t hash_result[32];
// Calculate nonce for this thread
uint32_t nonce = nonces[idx];
// Prepare input with nonce
uint8_t mining_input[1024];
memcpy(mining_input, input_data, 1016);
*((uint32_t*)(mining_input + 1016)) = nonce;
// Phase 1: Memory-hard computation
tos_memory_hard_gpu(mining_input, local_memory, difficulty);
// Phase 2: AI enhancement (simplified for GPU)
tos_ai_enhance_gpu(local_memory, hash_result, difficulty);
// Phase 3: Final hash
sha3_256_gpu(hash_result, &output_hashes[idx * 32]);
}
// Host function to launch GPU mining
void mine_tos_gpu(
uint8_t* block_data,
uint64_t difficulty,
uint32_t threads_per_block = 256,
uint32_t num_blocks = 1024
) {
uint32_t batch_size = threads_per_block * num_blocks;
// Allocate GPU memory
uint8_t *d_input, *d_output;
uint32_t *d_nonces;
cudaMalloc(&d_input, 1024);
cudaMalloc(&d_output, batch_size * 32);
cudaMalloc(&d_nonces, batch_size * sizeof(uint32_t));
// Copy input data
cudaMemcpy(d_input, block_data, 1024, cudaMemcpyHostToDevice);
// Generate nonce array
uint32_t* nonces = new uint32_t[batch_size];
for (uint32_t i = 0; i < batch_size; i++) {
nonces[i] = rand();
}
cudaMemcpy(d_nonces, nonces, batch_size * sizeof(uint32_t), cudaMemcpyHostToDevice);
// Launch kernel
tos_hash_kernel<<<num_blocks, threads_per_block>>>(
d_input, d_output, d_nonces, difficulty, batch_size
);
// Copy results back
uint8_t* results = new uint8_t[batch_size * 32];
cudaMemcpy(results, d_output, batch_size * 32, cudaMemcpyDeviceToHost);
// Check for valid solutions
check_solutions(results, nonces, difficulty, batch_size);
// Cleanup
cudaFree(d_input);
cudaFree(d_output);
cudaFree(d_nonces);
delete[] nonces;
delete[] results;
}CPU Optimization
#include <immintrin.h> // AVX2 intrinsics
#include <thread>
#include <vector>
class TOSHashCPU {
private:
uint64_t difficulty;
uint32_t num_threads;
public:
TOSHashCPU(uint64_t diff) : difficulty(diff) {
num_threads = std::thread::hardware_concurrency();
}
// AVX2-optimized hash function
void hash_avx2(const uint8_t* input, uint8_t* output) {
__m256i state[8];
// Load input into AVX2 registers
for (int i = 0; i < 8; i++) {
state[i] = _mm256_loadu_si256((__m256i*)(input + i * 32));
}
// Memory-hard processing with SIMD
for (uint32_t round = 0; round < difficulty / 1000; round++) {
memory_hard_round_avx2(state);
}
// AI enhancement with SIMD
ai_enhance_avx2(state);
// Final hash
finalize_hash_avx2(state, output);
}
// Multi-threaded mining
std::pair<uint32_t, std::vector<uint8_t>> mine_parallel(
const std::vector<uint8_t>& block_data
) {
std::atomic<bool> found{false};
std::atomic<uint32_t> result_nonce{0};
std::vector<uint8_t> result_hash(32);
std::vector<std::thread> threads;
for (uint32_t t = 0; t < num_threads; t++) {
threads.emplace_back([&, t]() {
uint32_t start_nonce = t * (UINT32_MAX / num_threads);
uint32_t end_nonce = (t + 1) * (UINT32_MAX / num_threads);
for (uint32_t nonce = start_nonce; nonce < end_nonce && !found; nonce++) {
std::vector<uint8_t> input = block_data;
// Append nonce
for (int i = 0; i < 4; i++) {
input.push_back((nonce >> (i * 8)) & 0xFF);
}
// Calculate hash
std::vector<uint8_t> hash(32);
hash_avx2(input.data(), hash.data());
// Check if valid
if (check_difficulty(hash)) {
found = true;
result_nonce = nonce;
result_hash = hash;
break;
}
}
});
}
// Wait for threads
for (auto& thread : threads) {
thread.join();
}
if (!found) {
throw std::runtime_error("Mining failed");
}
return {result_nonce, result_hash};
}
private:
void memory_hard_round_avx2(__m256i state[8]) {
// SIMD memory-hard computation
for (int i = 0; i < 8; i++) {
// Mixing operations using AVX2
state[i] = _mm256_add_epi32(state[i], state[(i + 1) % 8]);
state[i] = _mm256_xor_si256(state[i], _mm256_slli_epi32(state[i], 13));
state[i] = _mm256_add_epi32(state[i], state[(i + 2) % 8]);
}
}
void ai_enhance_avx2(__m256i state[8]) {
// Simplified AI enhancement with SIMD
__m256i weights = _mm256_set1_epi32(0x9E3779B9); // Golden ratio
for (int round = 0; round < 4; round++) {
for (int i = 0; i < 8; i++) {
// Neural network-inspired transformation
state[i] = _mm256_mullo_epi32(state[i], weights);
state[i] = _mm256_add_epi32(state[i], _mm256_srli_epi32(state[i], 16));
}
}
}
void finalize_hash_avx2(__m256i state[8], uint8_t* output) {
// Combine all state into final hash
__m256i combined = state[0];
for (int i = 1; i < 8; i++) {
combined = _mm256_xor_si256(combined, state[i]);
}
// Store result
_mm256_storeu_si256((__m256i*)output, combined);
}
bool check_difficulty(const std::vector<uint8_t>& hash) {
// Convert to big integer and compare with target
uint64_t target = UINT64_MAX / difficulty;
uint64_t hash_val = 0;
for (int i = 0; i < 8; i++) {
hash_val = (hash_val << 8) | hash[i];
}
return hash_val < target;
}
};Security Analysis
Quantum Resistance
TOS Hash provides quantum resistance through:
- Large Memory Requirements: Quantum computers struggle with memory-intensive operations
- Non-linear Transformations: AI enhancements create quantum-resistant complexity
- Hash Function Diversity: Multiple underlying algorithms increase attack difficulty
Cryptographic Properties
def analyze_tos_hash_properties():
"""Analyze cryptographic properties of TOS Hash"""
properties = {
'preimage_resistance': test_preimage_resistance(),
'second_preimage_resistance': test_second_preimage_resistance(),
'collision_resistance': test_collision_resistance(),
'avalanche_effect': test_avalanche_effect(),
'uniformity': test_output_uniformity(),
'ai_enhancement_security': test_ai_security()
}
return properties
def test_preimage_resistance(samples=10000):
"""Test resistance to preimage attacks"""
successful_attacks = 0
for _ in range(samples):
# Generate random target hash
target = os.urandom(32)
# Try to find preimage (simplified test)
for attempt in range(1000):
candidate = os.urandom(64)
if tos_hash(candidate) == target:
successful_attacks += 1
break
# Should be approximately 0 for good hash function
return successful_attacks / samples
def test_avalanche_effect(samples=1000):
"""Test avalanche effect (small input change -> large output change)"""
total_bit_changes = 0
for _ in range(samples):
# Original input
input1 = os.urandom(64)
hash1 = tos_hash(input1)
# Flip one bit
input2 = bytearray(input1)
bit_pos = random.randint(0, len(input2) * 8 - 1)
byte_pos = bit_pos // 8
bit_in_byte = bit_pos % 8
input2[byte_pos] ^= (1 << bit_in_byte)
hash2 = tos_hash(bytes(input2))
# Count different bits
xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big')
bit_changes = bin(xor_result).count('1')
total_bit_changes += bit_changes
# Should be close to 50% (128 bits out of 256)
average_changes = total_bit_changes / samples
return average_changes / 256 # Normalize to percentageMining Pool Integration
Pool Protocol
{
"tos_mining_protocol": {
"version": "1.0",
"methods": {
"get_work": {
"description": "Request mining work from pool",
"parameters": {
"worker_id": "string",
"gpu_capable": "boolean",
"gpu_count": "integer"
},
"returns": {
"block_template": "hex_string",
"difficulty": "integer",
"ai_factor": "float",
"target": "hex_string"
}
},
"submit_work": {
"description": "Submit mining solution",
"parameters": {
"worker_id": "string",
"nonce": "integer",
"hash": "hex_string",
"ai_metrics": "object"
},
"returns": {
"accepted": "boolean",
"reason": "string"
}
}
}
}
}Pool Implementation Example
package main
import (
"crypto/rand"
"encoding/hex"
"encoding/json"
"fmt"
"net/http"
"time"
)
type TOSMiningPool struct {
difficulty uint64
workers map[string]*Worker
blockTemplate []byte
aiEnabled bool
}
type Worker struct {
ID string
HashRate float64
AICapable bool
LastActivity time.Time
}
type WorkRequest struct {
WorkerID string `json:"worker_id"`
GPUCapable bool `json:"gpu_capable"`
GPUCount int `json:"gpu_count"`
}
type WorkResponse struct {
BlockTemplate string `json:"block_template"`
Difficulty uint64 `json:"difficulty"`
AIFactor float64 `json:"ai_factor"`
Target string `json:"target"`
}
func (pool *TOSMiningPool) GetWork(w http.ResponseWriter, r *http.Request) {
var req WorkRequest
json.NewDecoder(r.Body).Decode(&req)
// Update worker info
worker := pool.workers[req.WorkerID]
if worker == nil {
worker = &Worker{
ID: req.WorkerID,
GPUCapable: req.GPUCapable,
}
pool.workers[req.WorkerID] = worker
}
worker.LastActivity = time.Now()
// Calculate GPU factor based on worker capabilities
gpuFactor := 1.0
if req.GPUCapable && pool.gpuEnabled {
gpuFactor = 1.0 + float64(req.GPUCount)*0.1
}
// Calculate target from difficulty
target := calculateTarget(pool.difficulty)
response := WorkResponse{
BlockTemplate: hex.EncodeToString(pool.blockTemplate),
Difficulty: pool.difficulty,
AIFactor: aiFactor,
Target: hex.EncodeToString(target[:]),
}
json.NewEncoder(w).Encode(response)
}
type SubmitRequest struct {
WorkerID string `json:"worker_id"`
Nonce uint64 `json:"nonce"`
Hash string `json:"hash"`
AIMetrics map[string]interface{} `json:"ai_metrics"`
}
type SubmitResponse struct {
Accepted bool `json:"accepted"`
Reason string `json:"reason"`
}
func (pool *TOSMiningPool) SubmitWork(w http.ResponseWriter, r *http.Request) {
var req SubmitRequest
json.NewDecoder(r.Body).Decode(&req)
// Verify hash
hashBytes, _ := hex.DecodeString(req.Hash)
if pool.verifyHash(hashBytes, req.Nonce) {
// Valid solution
response := SubmitResponse{
Accepted: true,
Reason: "Valid solution",
}
// Update worker stats
if worker := pool.workers[req.WorkerID]; worker != nil {
worker.HashRate = pool.calculateHashRate(worker, req.AIMetrics)
}
json.NewEncoder(w).Encode(response)
} else {
response := SubmitResponse{
Accepted: false,
Reason: "Invalid hash",
}
json.NewEncoder(w).Encode(response)
}
}
func (pool *TOSMiningPool) verifyHash(hash []byte, nonce uint64) bool {
// Verify that the submitted hash meets the difficulty target
target := calculateTarget(pool.difficulty)
// Convert hash to big integer for comparison
hashInt := bytesToBigInt(hash)
targetInt := bytesToBigInt(target[:])
return hashInt.Cmp(targetInt) < 0
}
func calculateTarget(difficulty uint64) [32]byte {
// Calculate mining target from difficulty
maxTarget := [32]byte{}
for i := range maxTarget {
maxTarget[i] = 0xFF
}
// Target = MaxTarget / Difficulty
return divideByteArray(maxTarget, difficulty)
}Testing and Validation
Comprehensive Test Suite
import unittest
import hashlib
import time
from tos_hash import TOSHasher, TOSMiner
class TestTOSHash(unittest.TestCase):
def setUp(self):
self.hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
self.test_data = b"TOS Network Test Block Data"
self.test_salt = b"A" * 64
def test_deterministic_output(self):
"""Hash should be deterministic for same inputs"""
hash1 = self.hasher.hash(self.test_data, self.test_salt)
hash2 = self.hasher.hash(self.test_data, self.test_salt)
self.assertEqual(hash1, hash2)
def test_avalanche_effect(self):
"""Small input change should cause large output change"""
hash1 = self.hasher.hash(self.test_data, self.test_salt)
# Change one bit
modified_data = bytearray(self.test_data)
modified_data[0] ^= 1
hash2 = self.hasher.hash(bytes(modified_data), self.test_salt)
# Count different bits
xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big')
different_bits = bin(xor_result).count('1')
# Should be close to 50% (128 out of 256 bits)
self.assertGreater(different_bits, 100)
self.assertLess(different_bits, 156)
def test_difficulty_scaling(self):
"""Higher difficulty should require more work"""
easy_hasher = TOSHasher(difficulty=1000, ai_factor=1.0)
hard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
# Time easy mining
start_time = time.time()
easy_miner = TOSMiner(1000)
easy_nonce, _ = easy_miner.mine_block(self.test_data, max_nonce=100000)
easy_time = time.time() - start_time
# Time hard mining (limited iterations for test)
start_time = time.time()
hard_miner = TOSMiner(10000) # Reduced for test
try:
hard_nonce, _ = hard_miner.mine_block(self.test_data, max_nonce=100000)
hard_time = time.time() - start_time
# Hard mining should take longer
self.assertGreater(hard_time, easy_time)
except ValueError:
# Expected to fail with high difficulty and limited iterations
pass
def test_ai_enhancement(self):
"""AI factor should affect hash output"""
standard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
ai_hasher = TOSHasher(difficulty=1000000, ai_factor=2.0)
hash1 = standard_hasher.hash(self.test_data, self.test_salt)
hash2 = ai_hasher.hash(self.test_data, self.test_salt)
self.assertNotEqual(hash1, hash2)
def test_salt_dependency(self):
"""Different salts should produce different hashes"""
salt1 = b"A" * 64
salt2 = b"B" * 64
hash1 = self.hasher.hash(self.test_data, salt1)
hash2 = self.hasher.hash(self.test_data, salt2)
self.assertNotEqual(hash1, hash2)
def test_output_size(self):
"""Hash output should always be 32 bytes"""
for i in range(100):
test_input = f"test_{i}".encode()
hash_output = self.hasher.hash(test_input, self.test_salt)
self.assertEqual(len(hash_output), 32)
def test_performance_benchmarks(self):
"""Performance should meet minimum requirements"""
start_time = time.time()
iterations = 1000
for i in range(iterations):
self.hasher.hash(f"test_{i}".encode(), self.test_salt)
total_time = time.time() - start_time
hashes_per_second = iterations / total_time
# Should achieve at least 100 hashes per second on modern hardware
self.assertGreater(hashes_per_second, 100)
if __name__ == '__main__':
unittest.main()Integration Examples
Blockchain Integration
use serde::{Deserialize, Serialize};
use std::time::{SystemTime, UNIX_EPOCH};
#[derive(Serialize, Deserialize, Clone)]
pub struct Block {
pub header: BlockHeader,
pub transactions: Vec<Transaction>,
}
#[derive(Serialize, Deserialize, Clone)]
pub struct BlockHeader {
pub previous_hash: [u8; 32],
pub merkle_root: [u8; 32],
pub timestamp: u64,
pub difficulty: u64,
pub nonce: u64,
pub ai_factor: f64,
pub hash: [u8; 32],
}
impl Block {
pub fn new(
previous_hash: [u8; 32],
transactions: Vec<Transaction>,
difficulty: u64,
ai_factor: f64,
) -> Self {
let merkle_root = calculate_merkle_root(&transactions);
let timestamp = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs();
let header = BlockHeader {
previous_hash,
merkle_root,
timestamp,
difficulty,
nonce: 0,
ai_factor,
hash: [0; 32],
};
Self {
header,
transactions,
}
}
pub fn mine(&mut self) -> Result<(), String> {
let hasher = TOSHasher::new(self.header.difficulty, self.header.ai_factor);
let target = self.calculate_target();
for nonce in 0..u64::MAX {
self.header.nonce = nonce;
let hash = self.calculate_hash(&hasher);
if self.meets_target(&hash, &target) {
self.header.hash = hash;
return Ok(());
}
}
Err("Mining failed".to_string())
}
fn calculate_hash(&self, hasher: &TOSHasher) -> [u8; 32] {
let header_bytes = bincode::serialize(&self.header).unwrap();
let salt = self.generate_salt();
hasher.hash(&header_bytes, &salt)
}
fn generate_salt(&self) -> [u8; 64] {
let mut salt = [0u8; 64];
let salt_input = format!(
"{}{}{}",
self.header.previous_hash.iter().map(|b| format!("{:02x}", b)).collect::<String>(),
self.header.timestamp,
self.header.difficulty
);
let hash = sha256::digest(salt_input.as_bytes());
salt[..32].copy_from_slice(&hex::decode(hash).unwrap());
salt[32..].copy_from_slice(&hex::decode(hash).unwrap());
salt
}
fn calculate_target(&self) -> [u8; 32] {
let mut target = [0xFFu8; 32];
// Simple target calculation (actual implementation would be more sophisticated)
let difficulty_bytes = self.header.difficulty.to_be_bytes();
for (i, &byte) in difficulty_bytes.iter().enumerate() {
if i < 32 {
target[i] = target[i].saturating_sub(byte);
}
}
target
}
fn meets_target(&self, hash: &[u8; 32], target: &[u8; 32]) -> bool {
for (h, t) in hash.iter().zip(target.iter()) {
if h < t {
return true;
} else if h > t {
return false;
}
}
false
}
}TOS Hash represents a significant advancement in blockchain hashing algorithms, combining quantum resistance, GPU optimization, and robust security properties. By adhering to the “Don’t Trust, Verify it” principle, every aspect of the algorithm is transparent and verifiable by network participants.