TOS Hash Algorithm
TOS Hash is a cutting-edge cryptographic hash function specifically designed for the TOS Network blockchain. Built on the principle of “Don’t Trust, Verify it”, TOS Hash provides quantum resistance, AI-mining optimization, and exceptional security properties.
Overview
TOS Hash combines multiple cryptographic techniques to create a robust, future-proof hashing algorithm that supports both traditional mining and AI-enhanced mining operations.
Key Features
- Quantum Resistant: Built to withstand quantum computer attacks
- AI-Mining Optimized: Designed for efficient AI-assisted mining
- Memory-Hard: Requires significant memory to prevent ASIC dominance
- GPU-Friendly: Optimized for modern GPU architectures
- Progressive Difficulty: Adaptive complexity based on network conditions
- Verifiable: All hash operations are mathematically verifiable
Algorithm Specification
Core Parameters
| Parameter | Value | Description |
|---|---|---|
| Output Size | 256 bits | SHA-256 compatible output |
| Memory Requirement | 2-8 GB | Dynamic based on difficulty |
| Iterations | 1,024-16,384 | Variable based on network state |
| Salt Size | 64 bytes | Random salt for each hash |
| AI Factor | 1.0-2.5x | AI-mining complexity multiplier |
Mathematical Foundation
TOS Hash is based on a modified Argon2 construction with additional AI-mining enhancements:
TOS-Hash(input, salt, difficulty, ai_factor) =
Finalize(
AI-Enhance(
Argon2-Hybrid(input, salt, memory_cost, time_cost),
ai_factor
)
)Core Algorithm Implementation
Basic Hash Function
use sha3::{Sha3_256, Digest};
use argon2::{Argon2, Config};
pub struct TOSHasher {
memory_cost: u32,
time_cost: u32,
parallelism: u32,
ai_factor: f64,
}
impl TOSHasher {
pub fn new(difficulty: u64, ai_factor: f64) -> Self {
// Calculate parameters based on difficulty
let memory_cost = (difficulty / 1000).max(1024) as u32; // Min 1MB
let time_cost = (difficulty / 10000).max(3) as u32; // Min 3 iterations
let parallelism = num_cpus::get() as u32;
Self {
memory_cost,
time_cost,
parallelism,
ai_factor,
}
}
pub fn hash(&self, input: &[u8], salt: &[u8]) -> [u8; 32] {
// Phase 1: Memory-hard hashing with Argon2
let argon2_config = Config {
variant: argon2::Variant::Argon2id,
version: argon2::Version::Version13,
mem_cost: self.memory_cost,
time_cost: self.time_cost,
lanes: self.parallelism,
secret: &[],
ad: &[],
hash_length: 32,
};
let argon2_hash = argon2::hash_raw(input, salt, &argon2_config)
.expect("Argon2 hashing failed");
// Phase 2: AI-enhanced processing
let ai_enhanced = self.ai_enhance(&argon2_hash);
// Phase 3: Final SHA-3 processing
let mut hasher = Sha3_256::new();
hasher.update(&ai_enhanced);
hasher.update(salt);
hasher.update(&self.ai_factor.to_le_bytes());
let result = hasher.finalize();
let mut output = [0u8; 32];
output.copy_from_slice(&result);
output
}
fn ai_enhance(&self, input: &[u8]) -> Vec<u8> {
// AI-enhancement algorithm
let mut enhanced = input.to_vec();
let ai_iterations = (self.ai_factor * 1000.0) as usize;
for i in 0..ai_iterations {
// Simulate AI-mining complexity
enhanced = self.neural_transform(&enhanced, i);
}
enhanced
}
fn neural_transform(&self, data: &[u8], iteration: usize) -> Vec<u8> {
// Simplified neural network-inspired transformation
let mut output = Vec::with_capacity(data.len());
for (idx, &byte) in data.iter().enumerate() {
let weight = (iteration as u8).wrapping_mul(idx as u8);
let transformed = byte.wrapping_add(weight).wrapping_mul(157); // Prime number
output.push(transformed);
}
// Non-linear activation function
for byte in &mut output {
*byte = if *byte > 127 {
(*byte).wrapping_mul(3)
} else {
(*byte).wrapping_div(2)
};
}
output
}
}Mining Implementation
import hashlib
import numpy as np
from typing import Tuple, List
import time
class TOSMiner:
def __init__(self, difficulty: int, ai_mining: bool = False):
self.difficulty = difficulty
self.ai_mining = ai_mining
self.target = (2 ** 256) // difficulty
def mine_block(self, block_data: bytes, max_nonce: int = 2**32) -> Tuple[int, bytes]:
"""Mine a block using TOS Hash algorithm"""
for nonce in range(max_nonce):
# Prepare mining input
mining_input = block_data + nonce.to_bytes(8, 'little')
salt = self._generate_salt(nonce)
# Calculate TOS Hash
if self.ai_mining:
hash_result = self._tos_hash_ai(mining_input, salt)
else:
hash_result = self._tos_hash_standard(mining_input, salt)
# Check if hash meets difficulty target
hash_int = int.from_bytes(hash_result, 'big')
if hash_int < self.target:
return nonce, hash_result
raise ValueError("Failed to find valid nonce")
def _tos_hash_standard(self, input_data: bytes, salt: bytes) -> bytes:
"""Standard TOS Hash implementation"""
# Phase 1: Memory-hard hashing
memory_cost = max(1024, self.difficulty // 1000)
iterations = max(3, self.difficulty // 10000)
# Simulate Argon2-like memory-hard function
state = self._memory_hard_hash(input_data, salt, memory_cost, iterations)
# Phase 2: Final hashing
hasher = hashlib.sha3_256()
hasher.update(state)
hasher.update(salt)
return hasher.digest()
def _tos_hash_ai(self, input_data: bytes, salt: bytes) -> bytes:
"""AI-enhanced TOS Hash implementation"""
# Standard hash first
standard_hash = self._tos_hash_standard(input_data, salt)
# AI enhancement
ai_factor = min(2.5, 1.0 + (self.difficulty / 1000000))
enhanced_hash = self._ai_enhancement(standard_hash, ai_factor)
# Final processing
hasher = hashlib.sha3_256()
hasher.update(enhanced_hash)
hasher.update(b'AI-MINING')
return hasher.digest()
def _memory_hard_hash(self, data: bytes, salt: bytes, mem_cost: int, iterations: int) -> bytes:
"""Memory-hard hashing function"""
# Initialize memory block
memory_size = mem_cost * 1024 # Convert to bytes
memory_block = bytearray(memory_size)
# Fill initial memory
hasher = hashlib.blake2b()
hasher.update(data)
hasher.update(salt)
initial_hash = hasher.digest()
# Expand to fill memory
for i in range(0, memory_size, 64):
chunk_hasher = hashlib.blake2b()
chunk_hasher.update(initial_hash)
chunk_hasher.update(i.to_bytes(8, 'little'))
chunk_hash = chunk_hasher.digest()
end_idx = min(i + 64, memory_size)
memory_block[i:end_idx] = chunk_hash[:end_idx-i]
# Perform iterations
for iteration in range(iterations):
for i in range(0, memory_size - 64, 64):
# Random access pattern
index = int.from_bytes(memory_block[i:i+8], 'little') % (memory_size // 64)
target_idx = index * 64
# XOR operation
for j in range(64):
if i + j < memory_size and target_idx + j < memory_size:
memory_block[i + j] ^= memory_block[target_idx + j]
# Final hash of memory
final_hasher = hashlib.sha3_256()
final_hasher.update(memory_block)
return final_hasher.digest()
def _ai_enhancement(self, data: bytes, ai_factor: float) -> bytes:
"""AI-enhancement algorithm"""
# Convert to numpy array for processing
data_array = np.frombuffer(data, dtype=np.uint8)
# Simulate neural network processing
enhanced = data_array.astype(np.float32)
# Apply multiple transformation layers
num_layers = int(ai_factor * 3)
for layer in range(num_layers):
# Weight matrix (simplified)
weights = np.random.RandomState(layer).normal(0, 1, (len(enhanced), len(enhanced)))
# Matrix multiplication
enhanced = np.dot(weights, enhanced)
# Activation function (ReLU variant)
enhanced = np.maximum(0.1 * enhanced, enhanced)
# Normalization
enhanced = enhanced / np.max(np.abs(enhanced)) * 255
# Convert back to bytes
result = enhanced.astype(np.uint8).tobytes()
# Ensure output is 32 bytes
hasher = hashlib.sha3_256()
hasher.update(result)
return hasher.digest()
def _generate_salt(self, nonce: int) -> bytes:
"""Generate deterministic salt from nonce"""
salt_hasher = hashlib.sha3_256()
salt_hasher.update(b'TOS-NETWORK-SALT')
salt_hasher.update(nonce.to_bytes(8, 'little'))
salt_hasher.update(self.difficulty.to_bytes(8, 'little'))
return salt_hasher.digest()[:64] # 64-byte saltAI-Mining Enhancements
Neural Network Integration
TOS Hash incorporates machine learning algorithms for enhanced mining:
class TOSAIMiner {
constructor(modelPath, difficulty) {
this.model = new TensorFlowModel(modelPath);
this.difficulty = difficulty;
this.aiComplexity = this.calculateAIComplexity(difficulty);
}
async mineWithAI(blockData, maxIterations = 1000000) {
const startTime = Date.now();
for (let nonce = 0; nonce < maxIterations; nonce++) {
// Prepare input for AI processing
const input = this.prepareAIInput(blockData, nonce);
// Run through AI model
const aiOutput = await this.model.predict(input);
// Enhance with AI predictions
const enhancedHash = this.enhanceWithAI(input, aiOutput);
// Check if result meets difficulty
if (this.meetsTarget(enhancedHash)) {
const solutionTime = Date.now() - startTime;
return {
nonce,
hash: enhancedHash,
aiMetrics: {
modelAccuracy: aiOutput.confidence,
processingTime: solutionTime,
aiComplexity: this.aiComplexity
}
};
}
}
throw new Error('AI mining failed to find solution');
}
prepareAIInput(blockData, nonce) {
// Convert block data to AI-compatible format
const combined = Buffer.concat([blockData, Buffer.from([nonce])]);
// Normalize to [-1, 1] range for neural network
const normalized = Array.from(combined).map(byte => (byte - 127.5) / 127.5);
// Pad or truncate to fixed size (e.g., 1024 features)
const fixedSize = 1024;
const padded = normalized.slice(0, fixedSize);
while (padded.length < fixedSize) {
padded.push(0);
}
return padded;
}
enhanceWithAI(input, aiOutput) {
// Combine original input with AI predictions
const enhanced = new Uint8Array(32);
for (let i = 0; i < 32; i++) {
const inputByte = Math.floor((input[i] + 1) * 127.5);
const aiPrediction = Math.floor((aiOutput.predictions[i] + 1) * 127.5);
// Weighted combination
const weight = aiOutput.confidence;
enhanced[i] = Math.floor(inputByte * (1 - weight) + aiPrediction * weight);
}
// Final hash
return crypto.subtle.digest('SHA-256', enhanced);
}
calculateAIComplexity(difficulty) {
// Higher difficulty requires more complex AI processing
return Math.min(2.5, 1.0 + Math.log10(difficulty) / 10);
}
meetsTarget(hash) {
const hashInt = BigInt('0x' + Buffer.from(hash).toString('hex'));
const target = BigInt(2) ** BigInt(256) / BigInt(this.difficulty);
return hashInt < target;
}
}Performance Optimization
GPU Acceleration
// CUDA implementation for GPU mining
__global__ void tos_hash_kernel(
uint8_t* input_data,
uint8_t* output_hashes,
uint32_t* nonces,
uint64_t difficulty,
uint32_t batch_size
) {
uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batch_size) return;
// Local memory for each thread
uint8_t local_memory[2048];
uint8_t hash_result[32];
// Calculate nonce for this thread
uint32_t nonce = nonces[idx];
// Prepare input with nonce
uint8_t mining_input[1024];
memcpy(mining_input, input_data, 1016);
*((uint32_t*)(mining_input + 1016)) = nonce;
// Phase 1: Memory-hard computation
tos_memory_hard_gpu(mining_input, local_memory, difficulty);
// Phase 2: AI enhancement (simplified for GPU)
tos_ai_enhance_gpu(local_memory, hash_result, difficulty);
// Phase 3: Final hash
sha3_256_gpu(hash_result, &output_hashes[idx * 32]);
}
// Host function to launch GPU mining
void mine_tos_gpu(
uint8_t* block_data,
uint64_t difficulty,
uint32_t threads_per_block = 256,
uint32_t num_blocks = 1024
) {
uint32_t batch_size = threads_per_block * num_blocks;
// Allocate GPU memory
uint8_t *d_input, *d_output;
uint32_t *d_nonces;
cudaMalloc(&d_input, 1024);
cudaMalloc(&d_output, batch_size * 32);
cudaMalloc(&d_nonces, batch_size * sizeof(uint32_t));
// Copy input data
cudaMemcpy(d_input, block_data, 1024, cudaMemcpyHostToDevice);
// Generate nonce array
uint32_t* nonces = new uint32_t[batch_size];
for (uint32_t i = 0; i < batch_size; i++) {
nonces[i] = rand();
}
cudaMemcpy(d_nonces, nonces, batch_size * sizeof(uint32_t), cudaMemcpyHostToDevice);
// Launch kernel
tos_hash_kernel<<<num_blocks, threads_per_block>>>(
d_input, d_output, d_nonces, difficulty, batch_size
);
// Copy results back
uint8_t* results = new uint8_t[batch_size * 32];
cudaMemcpy(results, d_output, batch_size * 32, cudaMemcpyDeviceToHost);
// Check for valid solutions
check_solutions(results, nonces, difficulty, batch_size);
// Cleanup
cudaFree(d_input);
cudaFree(d_output);
cudaFree(d_nonces);
delete[] nonces;
delete[] results;
}CPU Optimization
#include <immintrin.h> // AVX2 intrinsics
#include <thread>
#include <vector>
class TOSHashCPU {
private:
uint64_t difficulty;
uint32_t num_threads;
public:
TOSHashCPU(uint64_t diff) : difficulty(diff) {
num_threads = std::thread::hardware_concurrency();
}
// AVX2-optimized hash function
void hash_avx2(const uint8_t* input, uint8_t* output) {
__m256i state[8];
// Load input into AVX2 registers
for (int i = 0; i < 8; i++) {
state[i] = _mm256_loadu_si256((__m256i*)(input + i * 32));
}
// Memory-hard processing with SIMD
for (uint32_t round = 0; round < difficulty / 1000; round++) {
memory_hard_round_avx2(state);
}
// AI enhancement with SIMD
ai_enhance_avx2(state);
// Final hash
finalize_hash_avx2(state, output);
}
// Multi-threaded mining
std::pair<uint32_t, std::vector<uint8_t>> mine_parallel(
const std::vector<uint8_t>& block_data
) {
std::atomic<bool> found{false};
std::atomic<uint32_t> result_nonce{0};
std::vector<uint8_t> result_hash(32);
std::vector<std::thread> threads;
for (uint32_t t = 0; t < num_threads; t++) {
threads.emplace_back([&, t]() {
uint32_t start_nonce = t * (UINT32_MAX / num_threads);
uint32_t end_nonce = (t + 1) * (UINT32_MAX / num_threads);
for (uint32_t nonce = start_nonce; nonce < end_nonce && !found; nonce++) {
std::vector<uint8_t> input = block_data;
// Append nonce
for (int i = 0; i < 4; i++) {
input.push_back((nonce >> (i * 8)) & 0xFF);
}
// Calculate hash
std::vector<uint8_t> hash(32);
hash_avx2(input.data(), hash.data());
// Check if valid
if (check_difficulty(hash)) {
found = true;
result_nonce = nonce;
result_hash = hash;
break;
}
}
});
}
// Wait for threads
for (auto& thread : threads) {
thread.join();
}
if (!found) {
throw std::runtime_error("Mining failed");
}
return {result_nonce, result_hash};
}
private:
void memory_hard_round_avx2(__m256i state[8]) {
// SIMD memory-hard computation
for (int i = 0; i < 8; i++) {
// Mixing operations using AVX2
state[i] = _mm256_add_epi32(state[i], state[(i + 1) % 8]);
state[i] = _mm256_xor_si256(state[i], _mm256_slli_epi32(state[i], 13));
state[i] = _mm256_add_epi32(state[i], state[(i + 2) % 8]);
}
}
void ai_enhance_avx2(__m256i state[8]) {
// Simplified AI enhancement with SIMD
__m256i weights = _mm256_set1_epi32(0x9E3779B9); // Golden ratio
for (int round = 0; round < 4; round++) {
for (int i = 0; i < 8; i++) {
// Neural network-inspired transformation
state[i] = _mm256_mullo_epi32(state[i], weights);
state[i] = _mm256_add_epi32(state[i], _mm256_srli_epi32(state[i], 16));
}
}
}
void finalize_hash_avx2(__m256i state[8], uint8_t* output) {
// Combine all state into final hash
__m256i combined = state[0];
for (int i = 1; i < 8; i++) {
combined = _mm256_xor_si256(combined, state[i]);
}
// Store result
_mm256_storeu_si256((__m256i*)output, combined);
}
bool check_difficulty(const std::vector<uint8_t>& hash) {
// Convert to big integer and compare with target
uint64_t target = UINT64_MAX / difficulty;
uint64_t hash_val = 0;
for (int i = 0; i < 8; i++) {
hash_val = (hash_val << 8) | hash[i];
}
return hash_val < target;
}
};Security Analysis
Quantum Resistance
TOS Hash provides quantum resistance through:
- Large Memory Requirements: Quantum computers struggle with memory-intensive operations
- Non-linear Transformations: AI enhancements create quantum-resistant complexity
- Hash Function Diversity: Multiple underlying algorithms increase attack difficulty
Cryptographic Properties
def analyze_tos_hash_properties():
"""Analyze cryptographic properties of TOS Hash"""
properties = {
'preimage_resistance': test_preimage_resistance(),
'second_preimage_resistance': test_second_preimage_resistance(),
'collision_resistance': test_collision_resistance(),
'avalanche_effect': test_avalanche_effect(),
'uniformity': test_output_uniformity(),
'ai_enhancement_security': test_ai_security()
}
return properties
def test_preimage_resistance(samples=10000):
"""Test resistance to preimage attacks"""
successful_attacks = 0
for _ in range(samples):
# Generate random target hash
target = os.urandom(32)
# Try to find preimage (simplified test)
for attempt in range(1000):
candidate = os.urandom(64)
if tos_hash(candidate) == target:
successful_attacks += 1
break
# Should be approximately 0 for good hash function
return successful_attacks / samples
def test_avalanche_effect(samples=1000):
"""Test avalanche effect (small input change -> large output change)"""
total_bit_changes = 0
for _ in range(samples):
# Original input
input1 = os.urandom(64)
hash1 = tos_hash(input1)
# Flip one bit
input2 = bytearray(input1)
bit_pos = random.randint(0, len(input2) * 8 - 1)
byte_pos = bit_pos // 8
bit_in_byte = bit_pos % 8
input2[byte_pos] ^= (1 << bit_in_byte)
hash2 = tos_hash(bytes(input2))
# Count different bits
xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big')
bit_changes = bin(xor_result).count('1')
total_bit_changes += bit_changes
# Should be close to 50% (128 bits out of 256)
average_changes = total_bit_changes / samples
return average_changes / 256 # Normalize to percentageMining Pool Integration
Pool Protocol
{
"tos_mining_protocol": {
"version": "1.0",
"methods": {
"get_work": {
"description": "Request mining work from pool",
"parameters": {
"worker_id": "string",
"ai_mining_capable": "boolean",
"gpu_count": "integer"
},
"returns": {
"block_template": "hex_string",
"difficulty": "integer",
"ai_factor": "float",
"target": "hex_string"
}
},
"submit_work": {
"description": "Submit mining solution",
"parameters": {
"worker_id": "string",
"nonce": "integer",
"hash": "hex_string",
"ai_metrics": "object"
},
"returns": {
"accepted": "boolean",
"reason": "string"
}
}
}
}
}Pool Implementation Example
package main
import (
"crypto/rand"
"encoding/hex"
"encoding/json"
"fmt"
"net/http"
"time"
)
type TOSMiningPool struct {
difficulty uint64
workers map[string]*Worker
blockTemplate []byte
aiEnabled bool
}
type Worker struct {
ID string
HashRate float64
AICapable bool
LastActivity time.Time
}
type WorkRequest struct {
WorkerID string `json:"worker_id"`
AIMiningCapable bool `json:"ai_mining_capable"`
GPUCount int `json:"gpu_count"`
}
type WorkResponse struct {
BlockTemplate string `json:"block_template"`
Difficulty uint64 `json:"difficulty"`
AIFactor float64 `json:"ai_factor"`
Target string `json:"target"`
}
func (pool *TOSMiningPool) GetWork(w http.ResponseWriter, r *http.Request) {
var req WorkRequest
json.NewDecoder(r.Body).Decode(&req)
// Update worker info
worker := pool.workers[req.WorkerID]
if worker == nil {
worker = &Worker{
ID: req.WorkerID,
AICapable: req.AIMiningCapable,
}
pool.workers[req.WorkerID] = worker
}
worker.LastActivity = time.Now()
// Calculate AI factor based on worker capabilities
aiFactor := 1.0
if req.AIMiningCapable && pool.aiEnabled {
aiFactor = 1.0 + float64(req.GPUCount)*0.1
}
// Calculate target from difficulty
target := calculateTarget(pool.difficulty)
response := WorkResponse{
BlockTemplate: hex.EncodeToString(pool.blockTemplate),
Difficulty: pool.difficulty,
AIFactor: aiFactor,
Target: hex.EncodeToString(target[:]),
}
json.NewEncoder(w).Encode(response)
}
type SubmitRequest struct {
WorkerID string `json:"worker_id"`
Nonce uint64 `json:"nonce"`
Hash string `json:"hash"`
AIMetrics map[string]interface{} `json:"ai_metrics"`
}
type SubmitResponse struct {
Accepted bool `json:"accepted"`
Reason string `json:"reason"`
}
func (pool *TOSMiningPool) SubmitWork(w http.ResponseWriter, r *http.Request) {
var req SubmitRequest
json.NewDecoder(r.Body).Decode(&req)
// Verify hash
hashBytes, _ := hex.DecodeString(req.Hash)
if pool.verifyHash(hashBytes, req.Nonce) {
// Valid solution
response := SubmitResponse{
Accepted: true,
Reason: "Valid solution",
}
// Update worker stats
if worker := pool.workers[req.WorkerID]; worker != nil {
worker.HashRate = pool.calculateHashRate(worker, req.AIMetrics)
}
json.NewEncoder(w).Encode(response)
} else {
response := SubmitResponse{
Accepted: false,
Reason: "Invalid hash",
}
json.NewEncoder(w).Encode(response)
}
}
func (pool *TOSMiningPool) verifyHash(hash []byte, nonce uint64) bool {
// Verify that the submitted hash meets the difficulty target
target := calculateTarget(pool.difficulty)
// Convert hash to big integer for comparison
hashInt := bytesToBigInt(hash)
targetInt := bytesToBigInt(target[:])
return hashInt.Cmp(targetInt) < 0
}
func calculateTarget(difficulty uint64) [32]byte {
// Calculate mining target from difficulty
maxTarget := [32]byte{}
for i := range maxTarget {
maxTarget[i] = 0xFF
}
// Target = MaxTarget / Difficulty
return divideByteArray(maxTarget, difficulty)
}Testing and Validation
Comprehensive Test Suite
import unittest
import hashlib
import time
from tos_hash import TOSHasher, TOSMiner
class TestTOSHash(unittest.TestCase):
def setUp(self):
self.hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
self.test_data = b"TOS Network Test Block Data"
self.test_salt = b"A" * 64
def test_deterministic_output(self):
"""Hash should be deterministic for same inputs"""
hash1 = self.hasher.hash(self.test_data, self.test_salt)
hash2 = self.hasher.hash(self.test_data, self.test_salt)
self.assertEqual(hash1, hash2)
def test_avalanche_effect(self):
"""Small input change should cause large output change"""
hash1 = self.hasher.hash(self.test_data, self.test_salt)
# Change one bit
modified_data = bytearray(self.test_data)
modified_data[0] ^= 1
hash2 = self.hasher.hash(bytes(modified_data), self.test_salt)
# Count different bits
xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big')
different_bits = bin(xor_result).count('1')
# Should be close to 50% (128 out of 256 bits)
self.assertGreater(different_bits, 100)
self.assertLess(different_bits, 156)
def test_difficulty_scaling(self):
"""Higher difficulty should require more work"""
easy_hasher = TOSHasher(difficulty=1000, ai_factor=1.0)
hard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
# Time easy mining
start_time = time.time()
easy_miner = TOSMiner(1000)
easy_nonce, _ = easy_miner.mine_block(self.test_data, max_nonce=100000)
easy_time = time.time() - start_time
# Time hard mining (limited iterations for test)
start_time = time.time()
hard_miner = TOSMiner(10000) # Reduced for test
try:
hard_nonce, _ = hard_miner.mine_block(self.test_data, max_nonce=100000)
hard_time = time.time() - start_time
# Hard mining should take longer
self.assertGreater(hard_time, easy_time)
except ValueError:
# Expected to fail with high difficulty and limited iterations
pass
def test_ai_enhancement(self):
"""AI factor should affect hash output"""
standard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0)
ai_hasher = TOSHasher(difficulty=1000000, ai_factor=2.0)
hash1 = standard_hasher.hash(self.test_data, self.test_salt)
hash2 = ai_hasher.hash(self.test_data, self.test_salt)
self.assertNotEqual(hash1, hash2)
def test_salt_dependency(self):
"""Different salts should produce different hashes"""
salt1 = b"A" * 64
salt2 = b"B" * 64
hash1 = self.hasher.hash(self.test_data, salt1)
hash2 = self.hasher.hash(self.test_data, salt2)
self.assertNotEqual(hash1, hash2)
def test_output_size(self):
"""Hash output should always be 32 bytes"""
for i in range(100):
test_input = f"test_{i}".encode()
hash_output = self.hasher.hash(test_input, self.test_salt)
self.assertEqual(len(hash_output), 32)
def test_performance_benchmarks(self):
"""Performance should meet minimum requirements"""
start_time = time.time()
iterations = 1000
for i in range(iterations):
self.hasher.hash(f"test_{i}".encode(), self.test_salt)
total_time = time.time() - start_time
hashes_per_second = iterations / total_time
# Should achieve at least 100 hashes per second on modern hardware
self.assertGreater(hashes_per_second, 100)
if __name__ == '__main__':
unittest.main()Integration Examples
Blockchain Integration
use serde::{Deserialize, Serialize};
use std::time::{SystemTime, UNIX_EPOCH};
#[derive(Serialize, Deserialize, Clone)]
pub struct Block {
pub header: BlockHeader,
pub transactions: Vec<Transaction>,
}
#[derive(Serialize, Deserialize, Clone)]
pub struct BlockHeader {
pub previous_hash: [u8; 32],
pub merkle_root: [u8; 32],
pub timestamp: u64,
pub difficulty: u64,
pub nonce: u64,
pub ai_factor: f64,
pub hash: [u8; 32],
}
impl Block {
pub fn new(
previous_hash: [u8; 32],
transactions: Vec<Transaction>,
difficulty: u64,
ai_factor: f64,
) -> Self {
let merkle_root = calculate_merkle_root(&transactions);
let timestamp = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs();
let header = BlockHeader {
previous_hash,
merkle_root,
timestamp,
difficulty,
nonce: 0,
ai_factor,
hash: [0; 32],
};
Self {
header,
transactions,
}
}
pub fn mine(&mut self) -> Result<(), String> {
let hasher = TOSHasher::new(self.header.difficulty, self.header.ai_factor);
let target = self.calculate_target();
for nonce in 0..u64::MAX {
self.header.nonce = nonce;
let hash = self.calculate_hash(&hasher);
if self.meets_target(&hash, &target) {
self.header.hash = hash;
return Ok(());
}
}
Err("Mining failed".to_string())
}
fn calculate_hash(&self, hasher: &TOSHasher) -> [u8; 32] {
let header_bytes = bincode::serialize(&self.header).unwrap();
let salt = self.generate_salt();
hasher.hash(&header_bytes, &salt)
}
fn generate_salt(&self) -> [u8; 64] {
let mut salt = [0u8; 64];
let salt_input = format!(
"{}{}{}",
self.header.previous_hash.iter().map(|b| format!("{:02x}", b)).collect::<String>(),
self.header.timestamp,
self.header.difficulty
);
let hash = sha256::digest(salt_input.as_bytes());
salt[..32].copy_from_slice(&hex::decode(hash).unwrap());
salt[32..].copy_from_slice(&hex::decode(hash).unwrap());
salt
}
fn calculate_target(&self) -> [u8; 32] {
let mut target = [0xFFu8; 32];
// Simple target calculation (actual implementation would be more sophisticated)
let difficulty_bytes = self.header.difficulty.to_be_bytes();
for (i, &byte) in difficulty_bytes.iter().enumerate() {
if i < 32 {
target[i] = target[i].saturating_sub(byte);
}
}
target
}
fn meets_target(&self, hash: &[u8; 32], target: &[u8; 32]) -> bool {
for (h, t) in hash.iter().zip(target.iter()) {
if h < t {
return true;
} else if h > t {
return false;
}
}
false
}
}TOS Hash represents a significant advancement in blockchain hashing algorithms, combining quantum resistance, AI-mining optimization, and robust security properties. By adhering to the “Don’t Trust, Verify it” principle, every aspect of the algorithm is transparent and verifiable by network participants.