Skip to Content
FeaturesTOS Hash Algorithm

TOS Hash Algorithm

TOS Hash is a cutting-edge cryptographic hash function specifically designed for the TOS Network blockchain. Built on the principle of “Don’t Trust, Verify it”, TOS Hash provides quantum resistance, GPU optimization, and exceptional security properties.

Overview

TOS Hash combines multiple cryptographic techniques to create a robust, future-proof hashing algorithm that supports both traditional CPU mining and GPU-accelerated mining operations.

Key Features

  • Quantum Resistant: Built to withstand quantum computer attacks
  • GPU Optimized: Designed for efficient GPU mining
  • Memory-Hard: Requires significant memory to prevent ASIC dominance
  • GPU-Friendly: Optimized for modern GPU architectures
  • Progressive Difficulty: Adaptive complexity based on network conditions
  • Verifiable: All hash operations are mathematically verifiable

Algorithm Specification

Core Parameters

ParameterValueDescription
Output Size256 bitsSHA-256 compatible output
Memory Requirement2-8 GBDynamic based on difficulty
Iterations1,024-16,384Variable based on network state
Salt Size64 bytesRandom salt for each hash
Complexity Factor1.0-2.5xMining complexity multiplier

Mathematical Foundation

TOS Hash is based on a modified Argon2 construction with additional mining optimizations:

TOS-Hash(input, salt, difficulty, ai_factor) = Finalize( AI-Enhance( Argon2-Hybrid(input, salt, memory_cost, time_cost), ai_factor ) )

Core Algorithm Implementation

Basic Hash Function

use sha3::{Sha3_256, Digest}; use argon2::{Argon2, Config}; pub struct TOSHasher { memory_cost: u32, time_cost: u32, parallelism: u32, ai_factor: f64, } impl TOSHasher { pub fn new(difficulty: u64, ai_factor: f64) -> Self { // Calculate parameters based on difficulty let memory_cost = (difficulty / 1000).max(1024) as u32; // Min 1MB let time_cost = (difficulty / 10000).max(3) as u32; // Min 3 iterations let parallelism = num_cpus::get() as u32; Self { memory_cost, time_cost, parallelism, ai_factor, } } pub fn hash(&self, input: &[u8], salt: &[u8]) -> [u8; 32] { // Phase 1: Memory-hard hashing with Argon2 let argon2_config = Config { variant: argon2::Variant::Argon2id, version: argon2::Version::Version13, mem_cost: self.memory_cost, time_cost: self.time_cost, lanes: self.parallelism, secret: &[], ad: &[], hash_length: 32, }; let argon2_hash = argon2::hash_raw(input, salt, &argon2_config) .expect("Argon2 hashing failed"); // Phase 2: AI-enhanced processing let ai_enhanced = self.ai_enhance(&argon2_hash); // Phase 3: Final SHA-3 processing let mut hasher = Sha3_256::new(); hasher.update(&ai_enhanced); hasher.update(salt); hasher.update(&self.ai_factor.to_le_bytes()); let result = hasher.finalize(); let mut output = [0u8; 32]; output.copy_from_slice(&result); output } fn ai_enhance(&self, input: &[u8]) -> Vec<u8> { // AI-enhancement algorithm let mut enhanced = input.to_vec(); let ai_iterations = (self.ai_factor * 1000.0) as usize; for i in 0..ai_iterations { // Simulate GPU-mining complexity enhanced = self.neural_transform(&enhanced, i); } enhanced } fn neural_transform(&self, data: &[u8], iteration: usize) -> Vec<u8> { // Simplified neural network-inspired transformation let mut output = Vec::with_capacity(data.len()); for (idx, &byte) in data.iter().enumerate() { let weight = (iteration as u8).wrapping_mul(idx as u8); let transformed = byte.wrapping_add(weight).wrapping_mul(157); // Prime number output.push(transformed); } // Non-linear activation function for byte in &mut output { *byte = if *byte > 127 { (*byte).wrapping_mul(3) } else { (*byte).wrapping_div(2) }; } output } }

Mining Implementation

import hashlib import numpy as np from typing import Tuple, List import time class TOSMiner: def __init__(self, difficulty: int, gpu_mining: bool = False): self.difficulty = difficulty self.gpu_mining = gpu_mining self.target = (2 ** 256) // difficulty def mine_block(self, block_data: bytes, max_nonce: int = 2**32) -> Tuple[int, bytes]: """Mine a block using TOS Hash algorithm""" for nonce in range(max_nonce): # Prepare mining input mining_input = block_data + nonce.to_bytes(8, 'little') salt = self._generate_salt(nonce) # Calculate TOS Hash if self.gpu_mining: hash_result = self._tos_hash_gpu(mining_input, salt) else: hash_result = self._tos_hash_standard(mining_input, salt) # Check if hash meets difficulty target hash_int = int.from_bytes(hash_result, 'big') if hash_int < self.target: return nonce, hash_result raise ValueError("Failed to find valid nonce") def _tos_hash_standard(self, input_data: bytes, salt: bytes) -> bytes: """Standard TOS Hash implementation""" # Phase 1: Memory-hard hashing memory_cost = max(1024, self.difficulty // 1000) iterations = max(3, self.difficulty // 10000) # Simulate Argon2-like memory-hard function state = self._memory_hard_hash(input_data, salt, memory_cost, iterations) # Phase 2: Final hashing hasher = hashlib.sha3_256() hasher.update(state) hasher.update(salt) return hasher.digest() def _tos_hash_ai(self, input_data: bytes, salt: bytes) -> bytes: """AI-enhanced TOS Hash implementation""" # Standard hash first standard_hash = self._tos_hash_standard(input_data, salt) # AI enhancement ai_factor = min(2.5, 1.0 + (self.difficulty / 1000000)) enhanced_hash = self._ai_enhancement(standard_hash, ai_factor) # Final processing hasher = hashlib.sha3_256() hasher.update(enhanced_hash) hasher.update(b'GPU-MINING') return hasher.digest() def _memory_hard_hash(self, data: bytes, salt: bytes, mem_cost: int, iterations: int) -> bytes: """Memory-hard hashing function""" # Initialize memory block memory_size = mem_cost * 1024 # Convert to bytes memory_block = bytearray(memory_size) # Fill initial memory hasher = hashlib.blake2b() hasher.update(data) hasher.update(salt) initial_hash = hasher.digest() # Expand to fill memory for i in range(0, memory_size, 64): chunk_hasher = hashlib.blake2b() chunk_hasher.update(initial_hash) chunk_hasher.update(i.to_bytes(8, 'little')) chunk_hash = chunk_hasher.digest() end_idx = min(i + 64, memory_size) memory_block[i:end_idx] = chunk_hash[:end_idx-i] # Perform iterations for iteration in range(iterations): for i in range(0, memory_size - 64, 64): # Random access pattern index = int.from_bytes(memory_block[i:i+8], 'little') % (memory_size // 64) target_idx = index * 64 # XOR operation for j in range(64): if i + j < memory_size and target_idx + j < memory_size: memory_block[i + j] ^= memory_block[target_idx + j] # Final hash of memory final_hasher = hashlib.sha3_256() final_hasher.update(memory_block) return final_hasher.digest() def _ai_enhancement(self, data: bytes, ai_factor: float) -> bytes: """AI-enhancement algorithm""" # Convert to numpy array for processing data_array = np.frombuffer(data, dtype=np.uint8) # Simulate neural network processing enhanced = data_array.astype(np.float32) # Apply multiple transformation layers num_layers = int(ai_factor * 3) for layer in range(num_layers): # Weight matrix (simplified) weights = np.random.RandomState(layer).normal(0, 1, (len(enhanced), len(enhanced))) # Matrix multiplication enhanced = np.dot(weights, enhanced) # Activation function (ReLU variant) enhanced = np.maximum(0.1 * enhanced, enhanced) # Normalization enhanced = enhanced / np.max(np.abs(enhanced)) * 255 # Convert back to bytes result = enhanced.astype(np.uint8).tobytes() # Ensure output is 32 bytes hasher = hashlib.sha3_256() hasher.update(result) return hasher.digest() def _generate_salt(self, nonce: int) -> bytes: """Generate deterministic salt from nonce""" salt_hasher = hashlib.sha3_256() salt_hasher.update(b'TOS-NETWORK-SALT') salt_hasher.update(nonce.to_bytes(8, 'little')) salt_hasher.update(self.difficulty.to_bytes(8, 'little')) return salt_hasher.digest()[:64] # 64-byte salt

GPU Mining Optimizations

Parallel Processing

TOS Hash incorporates parallel processing for enhanced GPU mining:

class TOSGPUMiner { constructor(difficulty) { this.difficulty = difficulty; this.complexity = this.calculateComplexity(difficulty); } async mineWithGPU(blockData, maxIterations = 1000000) { const startTime = Date.now(); for (let nonce = 0; nonce < maxIterations; nonce++) { // Prepare input for GPU processing const input = this.prepareInput(blockData, nonce); // Run through GPU processing const output = await this.processOnGPU(input); // Validate output const enhancedHash = this.enhanceWithAI(input, aiOutput); // Check if result meets difficulty if (this.meetsTarget(enhancedHash)) { const solutionTime = Date.now() - startTime; return { nonce, hash: enhancedHash, aiMetrics: { modelAccuracy: aiOutput.confidence, processingTime: solutionTime, aiComplexity: this.aiComplexity } }; } } throw new Error('GPU mining failed to find solution'); } prepareAIInput(blockData, nonce) { // Convert block data to AI-compatible format const combined = Buffer.concat([blockData, Buffer.from([nonce])]); // Normalize to [-1, 1] range for neural network const normalized = Array.from(combined).map(byte => (byte - 127.5) / 127.5); // Pad or truncate to fixed size (e.g., 1024 features) const fixedSize = 1024; const padded = normalized.slice(0, fixedSize); while (padded.length < fixedSize) { padded.push(0); } return padded; } enhanceWithAI(input, aiOutput) { // Combine original input with AI predictions const enhanced = new Uint8Array(32); for (let i = 0; i < 32; i++) { const inputByte = Math.floor((input[i] + 1) * 127.5); const aiPrediction = Math.floor((aiOutput.predictions[i] + 1) * 127.5); // Weighted combination const weight = aiOutput.confidence; enhanced[i] = Math.floor(inputByte * (1 - weight) + aiPrediction * weight); } // Final hash return crypto.subtle.digest('SHA-256', enhanced); } calculateAIComplexity(difficulty) { // Higher difficulty requires more complex AI processing return Math.min(2.5, 1.0 + Math.log10(difficulty) / 10); } meetsTarget(hash) { const hashInt = BigInt('0x' + Buffer.from(hash).toString('hex')); const target = BigInt(2) ** BigInt(256) / BigInt(this.difficulty); return hashInt < target; } }

Performance Optimization

GPU Acceleration

// CUDA implementation for GPU mining __global__ void tos_hash_kernel( uint8_t* input_data, uint8_t* output_hashes, uint32_t* nonces, uint64_t difficulty, uint32_t batch_size ) { uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= batch_size) return; // Local memory for each thread uint8_t local_memory[2048]; uint8_t hash_result[32]; // Calculate nonce for this thread uint32_t nonce = nonces[idx]; // Prepare input with nonce uint8_t mining_input[1024]; memcpy(mining_input, input_data, 1016); *((uint32_t*)(mining_input + 1016)) = nonce; // Phase 1: Memory-hard computation tos_memory_hard_gpu(mining_input, local_memory, difficulty); // Phase 2: AI enhancement (simplified for GPU) tos_ai_enhance_gpu(local_memory, hash_result, difficulty); // Phase 3: Final hash sha3_256_gpu(hash_result, &output_hashes[idx * 32]); } // Host function to launch GPU mining void mine_tos_gpu( uint8_t* block_data, uint64_t difficulty, uint32_t threads_per_block = 256, uint32_t num_blocks = 1024 ) { uint32_t batch_size = threads_per_block * num_blocks; // Allocate GPU memory uint8_t *d_input, *d_output; uint32_t *d_nonces; cudaMalloc(&d_input, 1024); cudaMalloc(&d_output, batch_size * 32); cudaMalloc(&d_nonces, batch_size * sizeof(uint32_t)); // Copy input data cudaMemcpy(d_input, block_data, 1024, cudaMemcpyHostToDevice); // Generate nonce array uint32_t* nonces = new uint32_t[batch_size]; for (uint32_t i = 0; i < batch_size; i++) { nonces[i] = rand(); } cudaMemcpy(d_nonces, nonces, batch_size * sizeof(uint32_t), cudaMemcpyHostToDevice); // Launch kernel tos_hash_kernel<<<num_blocks, threads_per_block>>>( d_input, d_output, d_nonces, difficulty, batch_size ); // Copy results back uint8_t* results = new uint8_t[batch_size * 32]; cudaMemcpy(results, d_output, batch_size * 32, cudaMemcpyDeviceToHost); // Check for valid solutions check_solutions(results, nonces, difficulty, batch_size); // Cleanup cudaFree(d_input); cudaFree(d_output); cudaFree(d_nonces); delete[] nonces; delete[] results; }

CPU Optimization

#include <immintrin.h> // AVX2 intrinsics #include <thread> #include <vector> class TOSHashCPU { private: uint64_t difficulty; uint32_t num_threads; public: TOSHashCPU(uint64_t diff) : difficulty(diff) { num_threads = std::thread::hardware_concurrency(); } // AVX2-optimized hash function void hash_avx2(const uint8_t* input, uint8_t* output) { __m256i state[8]; // Load input into AVX2 registers for (int i = 0; i < 8; i++) { state[i] = _mm256_loadu_si256((__m256i*)(input + i * 32)); } // Memory-hard processing with SIMD for (uint32_t round = 0; round < difficulty / 1000; round++) { memory_hard_round_avx2(state); } // AI enhancement with SIMD ai_enhance_avx2(state); // Final hash finalize_hash_avx2(state, output); } // Multi-threaded mining std::pair<uint32_t, std::vector<uint8_t>> mine_parallel( const std::vector<uint8_t>& block_data ) { std::atomic<bool> found{false}; std::atomic<uint32_t> result_nonce{0}; std::vector<uint8_t> result_hash(32); std::vector<std::thread> threads; for (uint32_t t = 0; t < num_threads; t++) { threads.emplace_back([&, t]() { uint32_t start_nonce = t * (UINT32_MAX / num_threads); uint32_t end_nonce = (t + 1) * (UINT32_MAX / num_threads); for (uint32_t nonce = start_nonce; nonce < end_nonce && !found; nonce++) { std::vector<uint8_t> input = block_data; // Append nonce for (int i = 0; i < 4; i++) { input.push_back((nonce >> (i * 8)) & 0xFF); } // Calculate hash std::vector<uint8_t> hash(32); hash_avx2(input.data(), hash.data()); // Check if valid if (check_difficulty(hash)) { found = true; result_nonce = nonce; result_hash = hash; break; } } }); } // Wait for threads for (auto& thread : threads) { thread.join(); } if (!found) { throw std::runtime_error("Mining failed"); } return {result_nonce, result_hash}; } private: void memory_hard_round_avx2(__m256i state[8]) { // SIMD memory-hard computation for (int i = 0; i < 8; i++) { // Mixing operations using AVX2 state[i] = _mm256_add_epi32(state[i], state[(i + 1) % 8]); state[i] = _mm256_xor_si256(state[i], _mm256_slli_epi32(state[i], 13)); state[i] = _mm256_add_epi32(state[i], state[(i + 2) % 8]); } } void ai_enhance_avx2(__m256i state[8]) { // Simplified AI enhancement with SIMD __m256i weights = _mm256_set1_epi32(0x9E3779B9); // Golden ratio for (int round = 0; round < 4; round++) { for (int i = 0; i < 8; i++) { // Neural network-inspired transformation state[i] = _mm256_mullo_epi32(state[i], weights); state[i] = _mm256_add_epi32(state[i], _mm256_srli_epi32(state[i], 16)); } } } void finalize_hash_avx2(__m256i state[8], uint8_t* output) { // Combine all state into final hash __m256i combined = state[0]; for (int i = 1; i < 8; i++) { combined = _mm256_xor_si256(combined, state[i]); } // Store result _mm256_storeu_si256((__m256i*)output, combined); } bool check_difficulty(const std::vector<uint8_t>& hash) { // Convert to big integer and compare with target uint64_t target = UINT64_MAX / difficulty; uint64_t hash_val = 0; for (int i = 0; i < 8; i++) { hash_val = (hash_val << 8) | hash[i]; } return hash_val < target; } };

Security Analysis

Quantum Resistance

TOS Hash provides quantum resistance through:

  • Large Memory Requirements: Quantum computers struggle with memory-intensive operations
  1. Non-linear Transformations: AI enhancements create quantum-resistant complexity
  2. Hash Function Diversity: Multiple underlying algorithms increase attack difficulty

Cryptographic Properties

def analyze_tos_hash_properties(): """Analyze cryptographic properties of TOS Hash""" properties = { 'preimage_resistance': test_preimage_resistance(), 'second_preimage_resistance': test_second_preimage_resistance(), 'collision_resistance': test_collision_resistance(), 'avalanche_effect': test_avalanche_effect(), 'uniformity': test_output_uniformity(), 'ai_enhancement_security': test_ai_security() } return properties def test_preimage_resistance(samples=10000): """Test resistance to preimage attacks""" successful_attacks = 0 for _ in range(samples): # Generate random target hash target = os.urandom(32) # Try to find preimage (simplified test) for attempt in range(1000): candidate = os.urandom(64) if tos_hash(candidate) == target: successful_attacks += 1 break # Should be approximately 0 for good hash function return successful_attacks / samples def test_avalanche_effect(samples=1000): """Test avalanche effect (small input change -> large output change)""" total_bit_changes = 0 for _ in range(samples): # Original input input1 = os.urandom(64) hash1 = tos_hash(input1) # Flip one bit input2 = bytearray(input1) bit_pos = random.randint(0, len(input2) * 8 - 1) byte_pos = bit_pos // 8 bit_in_byte = bit_pos % 8 input2[byte_pos] ^= (1 << bit_in_byte) hash2 = tos_hash(bytes(input2)) # Count different bits xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big') bit_changes = bin(xor_result).count('1') total_bit_changes += bit_changes # Should be close to 50% (128 bits out of 256) average_changes = total_bit_changes / samples return average_changes / 256 # Normalize to percentage

Mining Pool Integration

Pool Protocol

{ "tos_mining_protocol": { "version": "1.0", "methods": { "get_work": { "description": "Request mining work from pool", "parameters": { "worker_id": "string", "gpu_capable": "boolean", "gpu_count": "integer" }, "returns": { "block_template": "hex_string", "difficulty": "integer", "ai_factor": "float", "target": "hex_string" } }, "submit_work": { "description": "Submit mining solution", "parameters": { "worker_id": "string", "nonce": "integer", "hash": "hex_string", "ai_metrics": "object" }, "returns": { "accepted": "boolean", "reason": "string" } } } } }

Pool Implementation Example

package main import ( "crypto/rand" "encoding/hex" "encoding/json" "fmt" "net/http" "time" ) type TOSMiningPool struct { difficulty uint64 workers map[string]*Worker blockTemplate []byte aiEnabled bool } type Worker struct { ID string HashRate float64 AICapable bool LastActivity time.Time } type WorkRequest struct { WorkerID string `json:"worker_id"` GPUCapable bool `json:"gpu_capable"` GPUCount int `json:"gpu_count"` } type WorkResponse struct { BlockTemplate string `json:"block_template"` Difficulty uint64 `json:"difficulty"` AIFactor float64 `json:"ai_factor"` Target string `json:"target"` } func (pool *TOSMiningPool) GetWork(w http.ResponseWriter, r *http.Request) { var req WorkRequest json.NewDecoder(r.Body).Decode(&req) // Update worker info worker := pool.workers[req.WorkerID] if worker == nil { worker = &Worker{ ID: req.WorkerID, GPUCapable: req.GPUCapable, } pool.workers[req.WorkerID] = worker } worker.LastActivity = time.Now() // Calculate GPU factor based on worker capabilities gpuFactor := 1.0 if req.GPUCapable && pool.gpuEnabled { gpuFactor = 1.0 + float64(req.GPUCount)*0.1 } // Calculate target from difficulty target := calculateTarget(pool.difficulty) response := WorkResponse{ BlockTemplate: hex.EncodeToString(pool.blockTemplate), Difficulty: pool.difficulty, AIFactor: aiFactor, Target: hex.EncodeToString(target[:]), } json.NewEncoder(w).Encode(response) } type SubmitRequest struct { WorkerID string `json:"worker_id"` Nonce uint64 `json:"nonce"` Hash string `json:"hash"` AIMetrics map[string]interface{} `json:"ai_metrics"` } type SubmitResponse struct { Accepted bool `json:"accepted"` Reason string `json:"reason"` } func (pool *TOSMiningPool) SubmitWork(w http.ResponseWriter, r *http.Request) { var req SubmitRequest json.NewDecoder(r.Body).Decode(&req) // Verify hash hashBytes, _ := hex.DecodeString(req.Hash) if pool.verifyHash(hashBytes, req.Nonce) { // Valid solution response := SubmitResponse{ Accepted: true, Reason: "Valid solution", } // Update worker stats if worker := pool.workers[req.WorkerID]; worker != nil { worker.HashRate = pool.calculateHashRate(worker, req.AIMetrics) } json.NewEncoder(w).Encode(response) } else { response := SubmitResponse{ Accepted: false, Reason: "Invalid hash", } json.NewEncoder(w).Encode(response) } } func (pool *TOSMiningPool) verifyHash(hash []byte, nonce uint64) bool { // Verify that the submitted hash meets the difficulty target target := calculateTarget(pool.difficulty) // Convert hash to big integer for comparison hashInt := bytesToBigInt(hash) targetInt := bytesToBigInt(target[:]) return hashInt.Cmp(targetInt) < 0 } func calculateTarget(difficulty uint64) [32]byte { // Calculate mining target from difficulty maxTarget := [32]byte{} for i := range maxTarget { maxTarget[i] = 0xFF } // Target = MaxTarget / Difficulty return divideByteArray(maxTarget, difficulty) }

Testing and Validation

Comprehensive Test Suite

import unittest import hashlib import time from tos_hash import TOSHasher, TOSMiner class TestTOSHash(unittest.TestCase): def setUp(self): self.hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) self.test_data = b"TOS Network Test Block Data" self.test_salt = b"A" * 64 def test_deterministic_output(self): """Hash should be deterministic for same inputs""" hash1 = self.hasher.hash(self.test_data, self.test_salt) hash2 = self.hasher.hash(self.test_data, self.test_salt) self.assertEqual(hash1, hash2) def test_avalanche_effect(self): """Small input change should cause large output change""" hash1 = self.hasher.hash(self.test_data, self.test_salt) # Change one bit modified_data = bytearray(self.test_data) modified_data[0] ^= 1 hash2 = self.hasher.hash(bytes(modified_data), self.test_salt) # Count different bits xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big') different_bits = bin(xor_result).count('1') # Should be close to 50% (128 out of 256 bits) self.assertGreater(different_bits, 100) self.assertLess(different_bits, 156) def test_difficulty_scaling(self): """Higher difficulty should require more work""" easy_hasher = TOSHasher(difficulty=1000, ai_factor=1.0) hard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) # Time easy mining start_time = time.time() easy_miner = TOSMiner(1000) easy_nonce, _ = easy_miner.mine_block(self.test_data, max_nonce=100000) easy_time = time.time() - start_time # Time hard mining (limited iterations for test) start_time = time.time() hard_miner = TOSMiner(10000) # Reduced for test try: hard_nonce, _ = hard_miner.mine_block(self.test_data, max_nonce=100000) hard_time = time.time() - start_time # Hard mining should take longer self.assertGreater(hard_time, easy_time) except ValueError: # Expected to fail with high difficulty and limited iterations pass def test_ai_enhancement(self): """AI factor should affect hash output""" standard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) ai_hasher = TOSHasher(difficulty=1000000, ai_factor=2.0) hash1 = standard_hasher.hash(self.test_data, self.test_salt) hash2 = ai_hasher.hash(self.test_data, self.test_salt) self.assertNotEqual(hash1, hash2) def test_salt_dependency(self): """Different salts should produce different hashes""" salt1 = b"A" * 64 salt2 = b"B" * 64 hash1 = self.hasher.hash(self.test_data, salt1) hash2 = self.hasher.hash(self.test_data, salt2) self.assertNotEqual(hash1, hash2) def test_output_size(self): """Hash output should always be 32 bytes""" for i in range(100): test_input = f"test_{i}".encode() hash_output = self.hasher.hash(test_input, self.test_salt) self.assertEqual(len(hash_output), 32) def test_performance_benchmarks(self): """Performance should meet minimum requirements""" start_time = time.time() iterations = 1000 for i in range(iterations): self.hasher.hash(f"test_{i}".encode(), self.test_salt) total_time = time.time() - start_time hashes_per_second = iterations / total_time # Should achieve at least 100 hashes per second on modern hardware self.assertGreater(hashes_per_second, 100) if __name__ == '__main__': unittest.main()

Integration Examples

Blockchain Integration

use serde::{Deserialize, Serialize}; use std::time::{SystemTime, UNIX_EPOCH}; #[derive(Serialize, Deserialize, Clone)] pub struct Block { pub header: BlockHeader, pub transactions: Vec<Transaction>, } #[derive(Serialize, Deserialize, Clone)] pub struct BlockHeader { pub previous_hash: [u8; 32], pub merkle_root: [u8; 32], pub timestamp: u64, pub difficulty: u64, pub nonce: u64, pub ai_factor: f64, pub hash: [u8; 32], } impl Block { pub fn new( previous_hash: [u8; 32], transactions: Vec<Transaction>, difficulty: u64, ai_factor: f64, ) -> Self { let merkle_root = calculate_merkle_root(&transactions); let timestamp = SystemTime::now() .duration_since(UNIX_EPOCH) .unwrap() .as_secs(); let header = BlockHeader { previous_hash, merkle_root, timestamp, difficulty, nonce: 0, ai_factor, hash: [0; 32], }; Self { header, transactions, } } pub fn mine(&mut self) -> Result<(), String> { let hasher = TOSHasher::new(self.header.difficulty, self.header.ai_factor); let target = self.calculate_target(); for nonce in 0..u64::MAX { self.header.nonce = nonce; let hash = self.calculate_hash(&hasher); if self.meets_target(&hash, &target) { self.header.hash = hash; return Ok(()); } } Err("Mining failed".to_string()) } fn calculate_hash(&self, hasher: &TOSHasher) -> [u8; 32] { let header_bytes = bincode::serialize(&self.header).unwrap(); let salt = self.generate_salt(); hasher.hash(&header_bytes, &salt) } fn generate_salt(&self) -> [u8; 64] { let mut salt = [0u8; 64]; let salt_input = format!( "{}{}{}", self.header.previous_hash.iter().map(|b| format!("{:02x}", b)).collect::<String>(), self.header.timestamp, self.header.difficulty ); let hash = sha256::digest(salt_input.as_bytes()); salt[..32].copy_from_slice(&hex::decode(hash).unwrap()); salt[32..].copy_from_slice(&hex::decode(hash).unwrap()); salt } fn calculate_target(&self) -> [u8; 32] { let mut target = [0xFFu8; 32]; // Simple target calculation (actual implementation would be more sophisticated) let difficulty_bytes = self.header.difficulty.to_be_bytes(); for (i, &byte) in difficulty_bytes.iter().enumerate() { if i < 32 { target[i] = target[i].saturating_sub(byte); } } target } fn meets_target(&self, hash: &[u8; 32], target: &[u8; 32]) -> bool { for (h, t) in hash.iter().zip(target.iter()) { if h < t { return true; } else if h > t { return false; } } false } }

TOS Hash represents a significant advancement in blockchain hashing algorithms, combining quantum resistance, GPU optimization, and robust security properties. By adhering to the “Don’t Trust, Verify it” principle, every aspect of the algorithm is transparent and verifiable by network participants.

Last updated on