Skip to Content
FeaturesTOS Hash Algorithm

TOS Hash Algorithm

TOS Hash is a cutting-edge cryptographic hash function specifically designed for the TOS Network blockchain. Built on the principle of “Don’t Trust, Verify it”, TOS Hash provides quantum resistance, AI-mining optimization, and exceptional security properties.

Overview

TOS Hash combines multiple cryptographic techniques to create a robust, future-proof hashing algorithm that supports both traditional mining and AI-enhanced mining operations.

Key Features

  • Quantum Resistant: Built to withstand quantum computer attacks
  • AI-Mining Optimized: Designed for efficient AI-assisted mining
  • Memory-Hard: Requires significant memory to prevent ASIC dominance
  • GPU-Friendly: Optimized for modern GPU architectures
  • Progressive Difficulty: Adaptive complexity based on network conditions
  • Verifiable: All hash operations are mathematically verifiable

Algorithm Specification

Core Parameters

ParameterValueDescription
Output Size256 bitsSHA-256 compatible output
Memory Requirement2-8 GBDynamic based on difficulty
Iterations1,024-16,384Variable based on network state
Salt Size64 bytesRandom salt for each hash
AI Factor1.0-2.5xAI-mining complexity multiplier

Mathematical Foundation

TOS Hash is based on a modified Argon2 construction with additional AI-mining enhancements:

TOS-Hash(input, salt, difficulty, ai_factor) = Finalize( AI-Enhance( Argon2-Hybrid(input, salt, memory_cost, time_cost), ai_factor ) )

Core Algorithm Implementation

Basic Hash Function

use sha3::{Sha3_256, Digest}; use argon2::{Argon2, Config}; pub struct TOSHasher { memory_cost: u32, time_cost: u32, parallelism: u32, ai_factor: f64, } impl TOSHasher { pub fn new(difficulty: u64, ai_factor: f64) -> Self { // Calculate parameters based on difficulty let memory_cost = (difficulty / 1000).max(1024) as u32; // Min 1MB let time_cost = (difficulty / 10000).max(3) as u32; // Min 3 iterations let parallelism = num_cpus::get() as u32; Self { memory_cost, time_cost, parallelism, ai_factor, } } pub fn hash(&self, input: &[u8], salt: &[u8]) -> [u8; 32] { // Phase 1: Memory-hard hashing with Argon2 let argon2_config = Config { variant: argon2::Variant::Argon2id, version: argon2::Version::Version13, mem_cost: self.memory_cost, time_cost: self.time_cost, lanes: self.parallelism, secret: &[], ad: &[], hash_length: 32, }; let argon2_hash = argon2::hash_raw(input, salt, &argon2_config) .expect("Argon2 hashing failed"); // Phase 2: AI-enhanced processing let ai_enhanced = self.ai_enhance(&argon2_hash); // Phase 3: Final SHA-3 processing let mut hasher = Sha3_256::new(); hasher.update(&ai_enhanced); hasher.update(salt); hasher.update(&self.ai_factor.to_le_bytes()); let result = hasher.finalize(); let mut output = [0u8; 32]; output.copy_from_slice(&result); output } fn ai_enhance(&self, input: &[u8]) -> Vec<u8> { // AI-enhancement algorithm let mut enhanced = input.to_vec(); let ai_iterations = (self.ai_factor * 1000.0) as usize; for i in 0..ai_iterations { // Simulate AI-mining complexity enhanced = self.neural_transform(&enhanced, i); } enhanced } fn neural_transform(&self, data: &[u8], iteration: usize) -> Vec<u8> { // Simplified neural network-inspired transformation let mut output = Vec::with_capacity(data.len()); for (idx, &byte) in data.iter().enumerate() { let weight = (iteration as u8).wrapping_mul(idx as u8); let transformed = byte.wrapping_add(weight).wrapping_mul(157); // Prime number output.push(transformed); } // Non-linear activation function for byte in &mut output { *byte = if *byte > 127 { (*byte).wrapping_mul(3) } else { (*byte).wrapping_div(2) }; } output } }

Mining Implementation

import hashlib import numpy as np from typing import Tuple, List import time class TOSMiner: def __init__(self, difficulty: int, ai_mining: bool = False): self.difficulty = difficulty self.ai_mining = ai_mining self.target = (2 ** 256) // difficulty def mine_block(self, block_data: bytes, max_nonce: int = 2**32) -> Tuple[int, bytes]: """Mine a block using TOS Hash algorithm""" for nonce in range(max_nonce): # Prepare mining input mining_input = block_data + nonce.to_bytes(8, 'little') salt = self._generate_salt(nonce) # Calculate TOS Hash if self.ai_mining: hash_result = self._tos_hash_ai(mining_input, salt) else: hash_result = self._tos_hash_standard(mining_input, salt) # Check if hash meets difficulty target hash_int = int.from_bytes(hash_result, 'big') if hash_int < self.target: return nonce, hash_result raise ValueError("Failed to find valid nonce") def _tos_hash_standard(self, input_data: bytes, salt: bytes) -> bytes: """Standard TOS Hash implementation""" # Phase 1: Memory-hard hashing memory_cost = max(1024, self.difficulty // 1000) iterations = max(3, self.difficulty // 10000) # Simulate Argon2-like memory-hard function state = self._memory_hard_hash(input_data, salt, memory_cost, iterations) # Phase 2: Final hashing hasher = hashlib.sha3_256() hasher.update(state) hasher.update(salt) return hasher.digest() def _tos_hash_ai(self, input_data: bytes, salt: bytes) -> bytes: """AI-enhanced TOS Hash implementation""" # Standard hash first standard_hash = self._tos_hash_standard(input_data, salt) # AI enhancement ai_factor = min(2.5, 1.0 + (self.difficulty / 1000000)) enhanced_hash = self._ai_enhancement(standard_hash, ai_factor) # Final processing hasher = hashlib.sha3_256() hasher.update(enhanced_hash) hasher.update(b'AI-MINING') return hasher.digest() def _memory_hard_hash(self, data: bytes, salt: bytes, mem_cost: int, iterations: int) -> bytes: """Memory-hard hashing function""" # Initialize memory block memory_size = mem_cost * 1024 # Convert to bytes memory_block = bytearray(memory_size) # Fill initial memory hasher = hashlib.blake2b() hasher.update(data) hasher.update(salt) initial_hash = hasher.digest() # Expand to fill memory for i in range(0, memory_size, 64): chunk_hasher = hashlib.blake2b() chunk_hasher.update(initial_hash) chunk_hasher.update(i.to_bytes(8, 'little')) chunk_hash = chunk_hasher.digest() end_idx = min(i + 64, memory_size) memory_block[i:end_idx] = chunk_hash[:end_idx-i] # Perform iterations for iteration in range(iterations): for i in range(0, memory_size - 64, 64): # Random access pattern index = int.from_bytes(memory_block[i:i+8], 'little') % (memory_size // 64) target_idx = index * 64 # XOR operation for j in range(64): if i + j < memory_size and target_idx + j < memory_size: memory_block[i + j] ^= memory_block[target_idx + j] # Final hash of memory final_hasher = hashlib.sha3_256() final_hasher.update(memory_block) return final_hasher.digest() def _ai_enhancement(self, data: bytes, ai_factor: float) -> bytes: """AI-enhancement algorithm""" # Convert to numpy array for processing data_array = np.frombuffer(data, dtype=np.uint8) # Simulate neural network processing enhanced = data_array.astype(np.float32) # Apply multiple transformation layers num_layers = int(ai_factor * 3) for layer in range(num_layers): # Weight matrix (simplified) weights = np.random.RandomState(layer).normal(0, 1, (len(enhanced), len(enhanced))) # Matrix multiplication enhanced = np.dot(weights, enhanced) # Activation function (ReLU variant) enhanced = np.maximum(0.1 * enhanced, enhanced) # Normalization enhanced = enhanced / np.max(np.abs(enhanced)) * 255 # Convert back to bytes result = enhanced.astype(np.uint8).tobytes() # Ensure output is 32 bytes hasher = hashlib.sha3_256() hasher.update(result) return hasher.digest() def _generate_salt(self, nonce: int) -> bytes: """Generate deterministic salt from nonce""" salt_hasher = hashlib.sha3_256() salt_hasher.update(b'TOS-NETWORK-SALT') salt_hasher.update(nonce.to_bytes(8, 'little')) salt_hasher.update(self.difficulty.to_bytes(8, 'little')) return salt_hasher.digest()[:64] # 64-byte salt

AI-Mining Enhancements

Neural Network Integration

TOS Hash incorporates machine learning algorithms for enhanced mining:

class TOSAIMiner { constructor(modelPath, difficulty) { this.model = new TensorFlowModel(modelPath); this.difficulty = difficulty; this.aiComplexity = this.calculateAIComplexity(difficulty); } async mineWithAI(blockData, maxIterations = 1000000) { const startTime = Date.now(); for (let nonce = 0; nonce < maxIterations; nonce++) { // Prepare input for AI processing const input = this.prepareAIInput(blockData, nonce); // Run through AI model const aiOutput = await this.model.predict(input); // Enhance with AI predictions const enhancedHash = this.enhanceWithAI(input, aiOutput); // Check if result meets difficulty if (this.meetsTarget(enhancedHash)) { const solutionTime = Date.now() - startTime; return { nonce, hash: enhancedHash, aiMetrics: { modelAccuracy: aiOutput.confidence, processingTime: solutionTime, aiComplexity: this.aiComplexity } }; } } throw new Error('AI mining failed to find solution'); } prepareAIInput(blockData, nonce) { // Convert block data to AI-compatible format const combined = Buffer.concat([blockData, Buffer.from([nonce])]); // Normalize to [-1, 1] range for neural network const normalized = Array.from(combined).map(byte => (byte - 127.5) / 127.5); // Pad or truncate to fixed size (e.g., 1024 features) const fixedSize = 1024; const padded = normalized.slice(0, fixedSize); while (padded.length < fixedSize) { padded.push(0); } return padded; } enhanceWithAI(input, aiOutput) { // Combine original input with AI predictions const enhanced = new Uint8Array(32); for (let i = 0; i < 32; i++) { const inputByte = Math.floor((input[i] + 1) * 127.5); const aiPrediction = Math.floor((aiOutput.predictions[i] + 1) * 127.5); // Weighted combination const weight = aiOutput.confidence; enhanced[i] = Math.floor(inputByte * (1 - weight) + aiPrediction * weight); } // Final hash return crypto.subtle.digest('SHA-256', enhanced); } calculateAIComplexity(difficulty) { // Higher difficulty requires more complex AI processing return Math.min(2.5, 1.0 + Math.log10(difficulty) / 10); } meetsTarget(hash) { const hashInt = BigInt('0x' + Buffer.from(hash).toString('hex')); const target = BigInt(2) ** BigInt(256) / BigInt(this.difficulty); return hashInt < target; } }

Performance Optimization

GPU Acceleration

// CUDA implementation for GPU mining __global__ void tos_hash_kernel( uint8_t* input_data, uint8_t* output_hashes, uint32_t* nonces, uint64_t difficulty, uint32_t batch_size ) { uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= batch_size) return; // Local memory for each thread uint8_t local_memory[2048]; uint8_t hash_result[32]; // Calculate nonce for this thread uint32_t nonce = nonces[idx]; // Prepare input with nonce uint8_t mining_input[1024]; memcpy(mining_input, input_data, 1016); *((uint32_t*)(mining_input + 1016)) = nonce; // Phase 1: Memory-hard computation tos_memory_hard_gpu(mining_input, local_memory, difficulty); // Phase 2: AI enhancement (simplified for GPU) tos_ai_enhance_gpu(local_memory, hash_result, difficulty); // Phase 3: Final hash sha3_256_gpu(hash_result, &output_hashes[idx * 32]); } // Host function to launch GPU mining void mine_tos_gpu( uint8_t* block_data, uint64_t difficulty, uint32_t threads_per_block = 256, uint32_t num_blocks = 1024 ) { uint32_t batch_size = threads_per_block * num_blocks; // Allocate GPU memory uint8_t *d_input, *d_output; uint32_t *d_nonces; cudaMalloc(&d_input, 1024); cudaMalloc(&d_output, batch_size * 32); cudaMalloc(&d_nonces, batch_size * sizeof(uint32_t)); // Copy input data cudaMemcpy(d_input, block_data, 1024, cudaMemcpyHostToDevice); // Generate nonce array uint32_t* nonces = new uint32_t[batch_size]; for (uint32_t i = 0; i < batch_size; i++) { nonces[i] = rand(); } cudaMemcpy(d_nonces, nonces, batch_size * sizeof(uint32_t), cudaMemcpyHostToDevice); // Launch kernel tos_hash_kernel<<<num_blocks, threads_per_block>>>( d_input, d_output, d_nonces, difficulty, batch_size ); // Copy results back uint8_t* results = new uint8_t[batch_size * 32]; cudaMemcpy(results, d_output, batch_size * 32, cudaMemcpyDeviceToHost); // Check for valid solutions check_solutions(results, nonces, difficulty, batch_size); // Cleanup cudaFree(d_input); cudaFree(d_output); cudaFree(d_nonces); delete[] nonces; delete[] results; }

CPU Optimization

#include <immintrin.h> // AVX2 intrinsics #include <thread> #include <vector> class TOSHashCPU { private: uint64_t difficulty; uint32_t num_threads; public: TOSHashCPU(uint64_t diff) : difficulty(diff) { num_threads = std::thread::hardware_concurrency(); } // AVX2-optimized hash function void hash_avx2(const uint8_t* input, uint8_t* output) { __m256i state[8]; // Load input into AVX2 registers for (int i = 0; i < 8; i++) { state[i] = _mm256_loadu_si256((__m256i*)(input + i * 32)); } // Memory-hard processing with SIMD for (uint32_t round = 0; round < difficulty / 1000; round++) { memory_hard_round_avx2(state); } // AI enhancement with SIMD ai_enhance_avx2(state); // Final hash finalize_hash_avx2(state, output); } // Multi-threaded mining std::pair<uint32_t, std::vector<uint8_t>> mine_parallel( const std::vector<uint8_t>& block_data ) { std::atomic<bool> found{false}; std::atomic<uint32_t> result_nonce{0}; std::vector<uint8_t> result_hash(32); std::vector<std::thread> threads; for (uint32_t t = 0; t < num_threads; t++) { threads.emplace_back([&, t]() { uint32_t start_nonce = t * (UINT32_MAX / num_threads); uint32_t end_nonce = (t + 1) * (UINT32_MAX / num_threads); for (uint32_t nonce = start_nonce; nonce < end_nonce && !found; nonce++) { std::vector<uint8_t> input = block_data; // Append nonce for (int i = 0; i < 4; i++) { input.push_back((nonce >> (i * 8)) & 0xFF); } // Calculate hash std::vector<uint8_t> hash(32); hash_avx2(input.data(), hash.data()); // Check if valid if (check_difficulty(hash)) { found = true; result_nonce = nonce; result_hash = hash; break; } } }); } // Wait for threads for (auto& thread : threads) { thread.join(); } if (!found) { throw std::runtime_error("Mining failed"); } return {result_nonce, result_hash}; } private: void memory_hard_round_avx2(__m256i state[8]) { // SIMD memory-hard computation for (int i = 0; i < 8; i++) { // Mixing operations using AVX2 state[i] = _mm256_add_epi32(state[i], state[(i + 1) % 8]); state[i] = _mm256_xor_si256(state[i], _mm256_slli_epi32(state[i], 13)); state[i] = _mm256_add_epi32(state[i], state[(i + 2) % 8]); } } void ai_enhance_avx2(__m256i state[8]) { // Simplified AI enhancement with SIMD __m256i weights = _mm256_set1_epi32(0x9E3779B9); // Golden ratio for (int round = 0; round < 4; round++) { for (int i = 0; i < 8; i++) { // Neural network-inspired transformation state[i] = _mm256_mullo_epi32(state[i], weights); state[i] = _mm256_add_epi32(state[i], _mm256_srli_epi32(state[i], 16)); } } } void finalize_hash_avx2(__m256i state[8], uint8_t* output) { // Combine all state into final hash __m256i combined = state[0]; for (int i = 1; i < 8; i++) { combined = _mm256_xor_si256(combined, state[i]); } // Store result _mm256_storeu_si256((__m256i*)output, combined); } bool check_difficulty(const std::vector<uint8_t>& hash) { // Convert to big integer and compare with target uint64_t target = UINT64_MAX / difficulty; uint64_t hash_val = 0; for (int i = 0; i < 8; i++) { hash_val = (hash_val << 8) | hash[i]; } return hash_val < target; } };

Security Analysis

Quantum Resistance

TOS Hash provides quantum resistance through:

  • Large Memory Requirements: Quantum computers struggle with memory-intensive operations
  1. Non-linear Transformations: AI enhancements create quantum-resistant complexity
  2. Hash Function Diversity: Multiple underlying algorithms increase attack difficulty

Cryptographic Properties

def analyze_tos_hash_properties(): """Analyze cryptographic properties of TOS Hash""" properties = { 'preimage_resistance': test_preimage_resistance(), 'second_preimage_resistance': test_second_preimage_resistance(), 'collision_resistance': test_collision_resistance(), 'avalanche_effect': test_avalanche_effect(), 'uniformity': test_output_uniformity(), 'ai_enhancement_security': test_ai_security() } return properties def test_preimage_resistance(samples=10000): """Test resistance to preimage attacks""" successful_attacks = 0 for _ in range(samples): # Generate random target hash target = os.urandom(32) # Try to find preimage (simplified test) for attempt in range(1000): candidate = os.urandom(64) if tos_hash(candidate) == target: successful_attacks += 1 break # Should be approximately 0 for good hash function return successful_attacks / samples def test_avalanche_effect(samples=1000): """Test avalanche effect (small input change -> large output change)""" total_bit_changes = 0 for _ in range(samples): # Original input input1 = os.urandom(64) hash1 = tos_hash(input1) # Flip one bit input2 = bytearray(input1) bit_pos = random.randint(0, len(input2) * 8 - 1) byte_pos = bit_pos // 8 bit_in_byte = bit_pos % 8 input2[byte_pos] ^= (1 << bit_in_byte) hash2 = tos_hash(bytes(input2)) # Count different bits xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big') bit_changes = bin(xor_result).count('1') total_bit_changes += bit_changes # Should be close to 50% (128 bits out of 256) average_changes = total_bit_changes / samples return average_changes / 256 # Normalize to percentage

Mining Pool Integration

Pool Protocol

{ "tos_mining_protocol": { "version": "1.0", "methods": { "get_work": { "description": "Request mining work from pool", "parameters": { "worker_id": "string", "ai_mining_capable": "boolean", "gpu_count": "integer" }, "returns": { "block_template": "hex_string", "difficulty": "integer", "ai_factor": "float", "target": "hex_string" } }, "submit_work": { "description": "Submit mining solution", "parameters": { "worker_id": "string", "nonce": "integer", "hash": "hex_string", "ai_metrics": "object" }, "returns": { "accepted": "boolean", "reason": "string" } } } } }

Pool Implementation Example

package main import ( "crypto/rand" "encoding/hex" "encoding/json" "fmt" "net/http" "time" ) type TOSMiningPool struct { difficulty uint64 workers map[string]*Worker blockTemplate []byte aiEnabled bool } type Worker struct { ID string HashRate float64 AICapable bool LastActivity time.Time } type WorkRequest struct { WorkerID string `json:"worker_id"` AIMiningCapable bool `json:"ai_mining_capable"` GPUCount int `json:"gpu_count"` } type WorkResponse struct { BlockTemplate string `json:"block_template"` Difficulty uint64 `json:"difficulty"` AIFactor float64 `json:"ai_factor"` Target string `json:"target"` } func (pool *TOSMiningPool) GetWork(w http.ResponseWriter, r *http.Request) { var req WorkRequest json.NewDecoder(r.Body).Decode(&req) // Update worker info worker := pool.workers[req.WorkerID] if worker == nil { worker = &Worker{ ID: req.WorkerID, AICapable: req.AIMiningCapable, } pool.workers[req.WorkerID] = worker } worker.LastActivity = time.Now() // Calculate AI factor based on worker capabilities aiFactor := 1.0 if req.AIMiningCapable && pool.aiEnabled { aiFactor = 1.0 + float64(req.GPUCount)*0.1 } // Calculate target from difficulty target := calculateTarget(pool.difficulty) response := WorkResponse{ BlockTemplate: hex.EncodeToString(pool.blockTemplate), Difficulty: pool.difficulty, AIFactor: aiFactor, Target: hex.EncodeToString(target[:]), } json.NewEncoder(w).Encode(response) } type SubmitRequest struct { WorkerID string `json:"worker_id"` Nonce uint64 `json:"nonce"` Hash string `json:"hash"` AIMetrics map[string]interface{} `json:"ai_metrics"` } type SubmitResponse struct { Accepted bool `json:"accepted"` Reason string `json:"reason"` } func (pool *TOSMiningPool) SubmitWork(w http.ResponseWriter, r *http.Request) { var req SubmitRequest json.NewDecoder(r.Body).Decode(&req) // Verify hash hashBytes, _ := hex.DecodeString(req.Hash) if pool.verifyHash(hashBytes, req.Nonce) { // Valid solution response := SubmitResponse{ Accepted: true, Reason: "Valid solution", } // Update worker stats if worker := pool.workers[req.WorkerID]; worker != nil { worker.HashRate = pool.calculateHashRate(worker, req.AIMetrics) } json.NewEncoder(w).Encode(response) } else { response := SubmitResponse{ Accepted: false, Reason: "Invalid hash", } json.NewEncoder(w).Encode(response) } } func (pool *TOSMiningPool) verifyHash(hash []byte, nonce uint64) bool { // Verify that the submitted hash meets the difficulty target target := calculateTarget(pool.difficulty) // Convert hash to big integer for comparison hashInt := bytesToBigInt(hash) targetInt := bytesToBigInt(target[:]) return hashInt.Cmp(targetInt) < 0 } func calculateTarget(difficulty uint64) [32]byte { // Calculate mining target from difficulty maxTarget := [32]byte{} for i := range maxTarget { maxTarget[i] = 0xFF } // Target = MaxTarget / Difficulty return divideByteArray(maxTarget, difficulty) }

Testing and Validation

Comprehensive Test Suite

import unittest import hashlib import time from tos_hash import TOSHasher, TOSMiner class TestTOSHash(unittest.TestCase): def setUp(self): self.hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) self.test_data = b"TOS Network Test Block Data" self.test_salt = b"A" * 64 def test_deterministic_output(self): """Hash should be deterministic for same inputs""" hash1 = self.hasher.hash(self.test_data, self.test_salt) hash2 = self.hasher.hash(self.test_data, self.test_salt) self.assertEqual(hash1, hash2) def test_avalanche_effect(self): """Small input change should cause large output change""" hash1 = self.hasher.hash(self.test_data, self.test_salt) # Change one bit modified_data = bytearray(self.test_data) modified_data[0] ^= 1 hash2 = self.hasher.hash(bytes(modified_data), self.test_salt) # Count different bits xor_result = int.from_bytes(hash1, 'big') ^ int.from_bytes(hash2, 'big') different_bits = bin(xor_result).count('1') # Should be close to 50% (128 out of 256 bits) self.assertGreater(different_bits, 100) self.assertLess(different_bits, 156) def test_difficulty_scaling(self): """Higher difficulty should require more work""" easy_hasher = TOSHasher(difficulty=1000, ai_factor=1.0) hard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) # Time easy mining start_time = time.time() easy_miner = TOSMiner(1000) easy_nonce, _ = easy_miner.mine_block(self.test_data, max_nonce=100000) easy_time = time.time() - start_time # Time hard mining (limited iterations for test) start_time = time.time() hard_miner = TOSMiner(10000) # Reduced for test try: hard_nonce, _ = hard_miner.mine_block(self.test_data, max_nonce=100000) hard_time = time.time() - start_time # Hard mining should take longer self.assertGreater(hard_time, easy_time) except ValueError: # Expected to fail with high difficulty and limited iterations pass def test_ai_enhancement(self): """AI factor should affect hash output""" standard_hasher = TOSHasher(difficulty=1000000, ai_factor=1.0) ai_hasher = TOSHasher(difficulty=1000000, ai_factor=2.0) hash1 = standard_hasher.hash(self.test_data, self.test_salt) hash2 = ai_hasher.hash(self.test_data, self.test_salt) self.assertNotEqual(hash1, hash2) def test_salt_dependency(self): """Different salts should produce different hashes""" salt1 = b"A" * 64 salt2 = b"B" * 64 hash1 = self.hasher.hash(self.test_data, salt1) hash2 = self.hasher.hash(self.test_data, salt2) self.assertNotEqual(hash1, hash2) def test_output_size(self): """Hash output should always be 32 bytes""" for i in range(100): test_input = f"test_{i}".encode() hash_output = self.hasher.hash(test_input, self.test_salt) self.assertEqual(len(hash_output), 32) def test_performance_benchmarks(self): """Performance should meet minimum requirements""" start_time = time.time() iterations = 1000 for i in range(iterations): self.hasher.hash(f"test_{i}".encode(), self.test_salt) total_time = time.time() - start_time hashes_per_second = iterations / total_time # Should achieve at least 100 hashes per second on modern hardware self.assertGreater(hashes_per_second, 100) if __name__ == '__main__': unittest.main()

Integration Examples

Blockchain Integration

use serde::{Deserialize, Serialize}; use std::time::{SystemTime, UNIX_EPOCH}; #[derive(Serialize, Deserialize, Clone)] pub struct Block { pub header: BlockHeader, pub transactions: Vec<Transaction>, } #[derive(Serialize, Deserialize, Clone)] pub struct BlockHeader { pub previous_hash: [u8; 32], pub merkle_root: [u8; 32], pub timestamp: u64, pub difficulty: u64, pub nonce: u64, pub ai_factor: f64, pub hash: [u8; 32], } impl Block { pub fn new( previous_hash: [u8; 32], transactions: Vec<Transaction>, difficulty: u64, ai_factor: f64, ) -> Self { let merkle_root = calculate_merkle_root(&transactions); let timestamp = SystemTime::now() .duration_since(UNIX_EPOCH) .unwrap() .as_secs(); let header = BlockHeader { previous_hash, merkle_root, timestamp, difficulty, nonce: 0, ai_factor, hash: [0; 32], }; Self { header, transactions, } } pub fn mine(&mut self) -> Result<(), String> { let hasher = TOSHasher::new(self.header.difficulty, self.header.ai_factor); let target = self.calculate_target(); for nonce in 0..u64::MAX { self.header.nonce = nonce; let hash = self.calculate_hash(&hasher); if self.meets_target(&hash, &target) { self.header.hash = hash; return Ok(()); } } Err("Mining failed".to_string()) } fn calculate_hash(&self, hasher: &TOSHasher) -> [u8; 32] { let header_bytes = bincode::serialize(&self.header).unwrap(); let salt = self.generate_salt(); hasher.hash(&header_bytes, &salt) } fn generate_salt(&self) -> [u8; 64] { let mut salt = [0u8; 64]; let salt_input = format!( "{}{}{}", self.header.previous_hash.iter().map(|b| format!("{:02x}", b)).collect::<String>(), self.header.timestamp, self.header.difficulty ); let hash = sha256::digest(salt_input.as_bytes()); salt[..32].copy_from_slice(&hex::decode(hash).unwrap()); salt[32..].copy_from_slice(&hex::decode(hash).unwrap()); salt } fn calculate_target(&self) -> [u8; 32] { let mut target = [0xFFu8; 32]; // Simple target calculation (actual implementation would be more sophisticated) let difficulty_bytes = self.header.difficulty.to_be_bytes(); for (i, &byte) in difficulty_bytes.iter().enumerate() { if i < 32 { target[i] = target[i].saturating_sub(byte); } } target } fn meets_target(&self, hash: &[u8; 32], target: &[u8; 32]) -> bool { for (h, t) in hash.iter().zip(target.iter()) { if h < t { return true; } else if h > t { return false; } } false } }

TOS Hash represents a significant advancement in blockchain hashing algorithms, combining quantum resistance, AI-mining optimization, and robust security properties. By adhering to the “Don’t Trust, Verify it” principle, every aspect of the algorithm is transparent and verifiable by network participants.

Last updated on