AI-Mining Optimization Tutorial
Master the art of AI-Mining on TOS Network by optimizing your hardware, algorithms, and strategies to maximize both performance and earnings.
🎯 Learning Objectives
By the end of this tutorial, you will:
- Understand TOS Network’s AI-Mining architecture
- Optimize hardware configuration for maximum efficiency
- Implement advanced AI algorithms for better quality scores
- Monitor and improve mining performance
- Maximize earnings through strategic task selection
⏱️ Estimated Time
2 hours (plus ongoing optimization)
🛠️ Prerequisites
Required Knowledge
- Basic understanding of machine learning concepts
- Python programming (intermediate level)
- Basic understanding of blockchain mining
- GPU/CPU optimization experience (helpful but not required)
Hardware Requirements
- Minimum: 8GB RAM, GTX 1060 or equivalent
- Recommended: 16GB+ RAM, RTX 3080 or better
- Optimal: 32GB+ RAM, RTX 4090 or A100
Software Setup
- Python 3.9+
- CUDA 11.8+ (for GPU acceleration)
- TOS AI-Mining Client
- Required Python packages
pip install torch torchvision tensorflow-gpu tos-ai-mining-sdk
📝 Tutorial Overview
What We’ll Optimize
- Hardware configuration and monitoring
- AI algorithm performance
- Task selection strategies
- Quality score improvement
- Energy efficiency
- Earnings maximization
Step 1: Environment Setup
Install TOS AI-Mining SDK
# Create dedicated environment
python -m venv tos-ai-mining
source tos-ai-mining/bin/activate # Linux/Mac
# tos-ai-mining\Scripts\activate # Windows
# Install required packages
pip install tos-ai-mining-sdk torch torchvision tensorflow-gpu numpy pandas matplotlib
Initialize AI-Mining Client
# config/ai_mining_config.py
AI_MINING_CONFIG = {
'network': 'mainnet',
'rpc_url': 'https://rpc.tos.network',
'worker_address': 'your_tos_wallet_address',
'private_key': 'your_private_key',
# Hardware configuration
'hardware': {
'gpu_enabled': True,
'max_gpu_memory': 0.8, # Use 80% of GPU memory
'cpu_threads': -1, # Use all CPU cores
'mixed_precision': True, # Enable FP16 for better performance
},
# Task preferences
'task_preferences': {
'min_reward': 1.0, # Minimum reward in TOS
'max_duration': 3600, # Maximum task duration in seconds
'preferred_types': ['machine_learning', 'computer_vision', 'nlp'],
'avoid_types': ['blockchain_analysis'] # Tasks to avoid
},
# Quality optimization
'quality_settings': {
'target_score': 8.5, # Target quality score
'verification_enabled': True,
'ensemble_methods': True,
'cross_validation': True
}
}
Basic Client Setup
# src/ai_mining_client.py
import torch
import tensorflow as tf
from tos_ai_mining import TOSAIMiningClient
from config.ai_mining_config import AI_MINING_CONFIG
class OptimizedAIMiningClient:
def __init__(self, config):
self.config = config
self.client = TOSAIMiningClient(
rpc_url=config['rpc_url'],
worker_address=config['worker_address'],
private_key=config['private_key']
)
self.setup_hardware()
self.performance_metrics = {
'tasks_completed': 0,
'total_earnings': 0.0,
'average_quality_score': 0.0,
'energy_consumed': 0.0
}
def setup_hardware(self):
"""Optimize hardware configuration"""
# GPU optimization
if self.config['hardware']['gpu_enabled'] and torch.cuda.is_available():
torch.cuda.empty_cache()
# Set memory fraction
if hasattr(torch.cuda, 'set_per_process_memory_fraction'):
torch.cuda.set_per_process_memory_fraction(
self.config['hardware']['max_gpu_memory']
)
print(f"GPU: {torch.cuda.get_device_name()}")
print(f"CUDA Version: {torch.version.cuda}")
print(f"Available GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# TensorFlow GPU configuration
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# Set memory limit
memory_limit = int(tf.config.experimental.get_device_details(gpus[0])['device_memory_size'] *
self.config['hardware']['max_gpu_memory'])
tf.config.experimental.set_memory_limit(gpus[0], memory_limit)
except RuntimeError as e:
print(f"GPU configuration error: {e}")
# CPU optimization
torch.set_num_threads(self.config['hardware']['cpu_threads'])
tf.config.threading.set_intra_op_parallelism_threads(self.config['hardware']['cpu_threads'])
print("Hardware optimization completed")
async def connect(self):
"""Connect to TOS AI-Mining network"""
await self.client.connect()
print("Connected to TOS AI-Mining network")
Step 2: Task Analysis and Selection
Smart Task Selection Algorithm
# src/task_selector.py
import numpy as np
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class TaskMetrics:
task_id: str
reward: float
difficulty: str
estimated_duration: int
success_rate: float
average_quality_score: float
energy_cost: float
@property
def reward_per_hour(self) -> float:
return (self.reward * self.success_rate) / (self.estimated_duration / 3600)
@property
def energy_efficiency(self) -> float:
return self.reward_per_hour / self.energy_cost if self.energy_cost > 0 else 0
@property
def score(self) -> float:
# Weighted scoring algorithm
weights = {
'reward_per_hour': 0.4,
'energy_efficiency': 0.3,
'success_rate': 0.2,
'quality_score': 0.1
}
normalized_scores = {
'reward_per_hour': min(self.reward_per_hour / 10, 1),
'energy_efficiency': min(self.energy_efficiency / 5, 1),
'success_rate': self.success_rate,
'quality_score': self.average_quality_score / 10
}
return sum(weights[key] * normalized_scores[key] for key in weights)
class IntelligentTaskSelector:
def __init__(self, client, config):
self.client = client
self.config = config
self.task_history = []
self.performance_data = {}
async def get_optimal_tasks(self, limit: int = 5) -> List[TaskMetrics]:
"""Select optimal tasks based on profitability and hardware capabilities"""
available_tasks = await self.client.get_available_tasks()
# Analyze each task
task_metrics = []
for task in available_tasks:
metrics = await self.analyze_task(task)
if self.meets_criteria(metrics):
task_metrics.append(metrics)
# Sort by optimization score
task_metrics.sort(key=lambda x: x.score, reverse=True)
return task_metrics[:limit]
async def analyze_task(self, task) -> TaskMetrics:
"""Analyze task profitability and feasibility"""
# Get historical performance data
historical_performance = self.get_historical_performance(task['type'])
# Estimate duration based on hardware and task complexity
estimated_duration = self.estimate_duration(task)
# Calculate energy cost
energy_cost = self.estimate_energy_cost(task, estimated_duration)
return TaskMetrics(
task_id=task['task_id'],
reward=float(task['reward']),
difficulty=task['difficulty'],
estimated_duration=estimated_duration,
success_rate=historical_performance.get('success_rate', 0.8),
average_quality_score=historical_performance.get('avg_quality', 7.0),
energy_cost=energy_cost
)
def meets_criteria(self, metrics: TaskMetrics) -> bool:
"""Check if task meets minimum criteria"""
criteria = self.config['task_preferences']
return (
metrics.reward >= criteria['min_reward'] and
metrics.estimated_duration <= criteria['max_duration'] and
metrics.success_rate >= 0.6 and
metrics.energy_efficiency >= 0.5
)
def estimate_duration(self, task) -> int:
"""Estimate task completion time based on hardware and complexity"""
base_duration = task.get('estimated_time', 3600)
# Hardware performance factors
gpu_factor = 1.0
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name()
if 'RTX 4090' in gpu_name or 'A100' in gpu_name:
gpu_factor = 0.5
elif 'RTX 3080' in gpu_name or 'RTX 3090' in gpu_name:
gpu_factor = 0.7
elif 'RTX 2080' in gpu_name or 'GTX 1080' in gpu_name:
gpu_factor = 1.2
# Task complexity factors
complexity_factors = {
'easy': 0.8,
'medium': 1.0,
'hard': 1.5,
'expert': 2.0
}
complexity_factor = complexity_factors.get(task['difficulty'], 1.0)
return int(base_duration * gpu_factor * complexity_factor)
def estimate_energy_cost(self, task, duration) -> float:
"""Estimate energy consumption for task"""
# Base power consumption (watts)
base_power = 100 # CPU base
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name()
gpu_power = {
'RTX 4090': 450,
'RTX 3080': 320,
'RTX 3070': 220,
'GTX 1060': 120
}
for model, power in gpu_power.items():
if model in gpu_name:
base_power += power
break
# Convert to kWh
energy_kwh = (base_power * duration / 3600) / 1000
# Assume $0.10 per kWh
return energy_kwh * 0.10
def get_historical_performance(self, task_type) -> Dict:
"""Get historical performance data for task type"""
return self.performance_data.get(task_type, {
'success_rate': 0.8,
'avg_quality': 7.0,
'avg_duration': 3600
})
Step 3: Advanced AI Algorithm Implementation
High-Performance Model Architecture
# src/optimized_models.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import tensorflow as tf
from tensorflow.keras import layers, Model
class OptimizedResNet(nn.Module):
"""Optimized ResNet for AI-Mining tasks with mixed precision support"""
def __init__(self, num_classes=10, use_mixed_precision=True):
super(OptimizedResNet, self).__init__()
self.use_mixed_precision = use_mixed_precision
# Efficient stem
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# Residual blocks with different channel sizes
self.layer1 = self._make_layer(64, 64, 2)
self.layer2 = self._make_layer(64, 128, 2, stride=2)
self.layer3 = self._make_layer(128, 256, 2, stride=2)
self.layer4 = self._make_layer(256, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
# Initialize weights
self._initialize_weights()
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
layers.append(OptimizedBasicBlock(in_channels, out_channels, stride))
for _ in range(1, blocks):
layers.append(OptimizedBasicBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
with torch.cuda.amp.autocast(enabled=self.use_mixed_precision):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
class OptimizedBasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(OptimizedBasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = self.shortcut(x)
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
out = F.relu(out)
return out
class EfficientTransformer(nn.Module):
"""Memory-efficient transformer for NLP tasks"""
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, max_seq_len=512):
super(EfficientTransformer, self).__init__()
self.d_model = d_model
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = self._generate_positional_encoding(max_seq_len, d_model)
# Use memory-efficient attention
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.1,
activation='gelu',
batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
self.output_layer = nn.Linear(d_model, vocab_size)
# Gradient checkpointing for memory efficiency
self.use_checkpoint = True
def _generate_positional_encoding(self, max_len, d_model):
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
(-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe.unsqueeze(0)
def forward(self, x, mask=None):
seq_len = x.size(1)
# Add positional encoding
x = self.embedding(x) * torch.sqrt(torch.tensor(self.d_model, dtype=torch.float))
x = x + self.pos_encoding[:, :seq_len, :].to(x.device)
# Apply transformer with gradient checkpointing
if self.use_checkpoint and self.training:
x = torch.utils.checkpoint.checkpoint(self.transformer, x, mask)
else:
x = self.transformer(x, mask)
return self.output_layer(x)
Ensemble Methods for Higher Quality Scores
# src/ensemble_methods.py
import torch
import numpy as np
from typing import List, Dict, Any
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score, mean_squared_error
class AdvancedEnsemble:
"""Advanced ensemble methods for maximizing quality scores"""
def __init__(self, models: List[torch.nn.Module], weights: List[float] = None):
self.models = models
self.weights = weights or [1.0] * len(models)
self.calibration_data = None
def weighted_prediction(self, inputs):
"""Weighted ensemble prediction"""
predictions = []
for model, weight in zip(self.models, self.weights):
with torch.no_grad():
pred = model(inputs)
if isinstance(pred, torch.Tensor):
pred = torch.softmax(pred, dim=-1)
predictions.append(pred * weight)
# Weighted average
ensemble_pred = torch.stack(predictions).sum(dim=0) / sum(self.weights)
return ensemble_pred
def uncertainty_weighted_prediction(self, inputs):
"""Uncertainty-based ensemble weighting"""
predictions = []
uncertainties = []
for model in self.models:
# Enable dropout for uncertainty estimation
model.train()
# Multiple forward passes
mc_predictions = []
for _ in range(10):
with torch.no_grad():
pred = model(inputs)
mc_predictions.append(torch.softmax(pred, dim=-1))
model.eval()
# Calculate mean and uncertainty
mc_predictions = torch.stack(mc_predictions)
mean_pred = mc_predictions.mean(dim=0)
uncertainty = mc_predictions.std(dim=0).mean(dim=-1)
predictions.append(mean_pred)
uncertainties.append(uncertainty)
# Weight by inverse uncertainty
uncertainties = torch.stack(uncertainties)
weights = 1.0 / (uncertainties + 1e-6)
weights = weights / weights.sum(dim=0)
# Weighted prediction
predictions = torch.stack(predictions)
ensemble_pred = (predictions * weights.unsqueeze(-1)).sum(dim=0)
return ensemble_pred
def temperature_scaling_calibration(self, validation_loader):
"""Calibrate model confidence using temperature scaling"""
all_outputs = []
all_labels = []
# Collect validation data
for inputs, labels in validation_loader:
outputs = self.weighted_prediction(inputs)
all_outputs.append(outputs)
all_labels.append(labels)
all_outputs = torch.cat(all_outputs, dim=0)
all_labels = torch.cat(all_labels, dim=0)
# Find optimal temperature
temperature = nn.Parameter(torch.ones(1) * 1.5)
optimizer = torch.optim.LBFGS([temperature], lr=0.01, max_iter=50)
def eval():
optimizer.zero_grad()
scaled_outputs = all_outputs / temperature
loss = F.cross_entropy(scaled_outputs, all_labels)
loss.backward()
return loss
optimizer.step(eval)
self.temperature = temperature.item()
print(f"Optimal temperature: {self.temperature:.3f}")
def adaptive_ensemble_weights(self, validation_loader):
"""Learn optimal ensemble weights on validation data"""
# Collect individual model predictions
model_predictions = [[] for _ in self.models]
all_labels = []
for inputs, labels in validation_loader:
for i, model in enumerate(self.models):
with torch.no_grad():
pred = model(inputs)
model_predictions[i].append(torch.softmax(pred, dim=-1))
all_labels.append(labels)
# Concatenate predictions
for i in range(len(self.models)):
model_predictions[i] = torch.cat(model_predictions[i], dim=0)
all_labels = torch.cat(all_labels, dim=0)
# Optimize weights using validation performance
weights = nn.Parameter(torch.ones(len(self.models)) / len(self.models))
optimizer = torch.optim.Adam([weights], lr=0.01)
for epoch in range(100):
optimizer.zero_grad()
# Normalize weights
normalized_weights = F.softmax(weights, dim=0)
# Weighted ensemble prediction
ensemble_pred = sum(pred * w for pred, w in zip(model_predictions, normalized_weights))
# Loss
loss = F.cross_entropy(torch.log(ensemble_pred + 1e-8), all_labels)
loss.backward()
optimizer.step()
self.weights = F.softmax(weights, dim=0).detach().tolist()
print(f"Optimized weights: {self.weights}")
class QualityScoreOptimizer:
"""Optimize solutions specifically for TOS quality scoring"""
def __init__(self, base_model, task_type):
self.base_model = base_model
self.task_type = task_type
self.quality_history = []
def optimize_for_quality(self, data, target_score=8.5):
"""Optimize solution to achieve target quality score"""
if self.task_type == 'classification':
return self._optimize_classification(data, target_score)
elif self.task_type == 'regression':
return self._optimize_regression(data, target_score)
elif self.task_type == 'generation':
return self._optimize_generation(data, target_score)
else:
return self._generic_optimization(data, target_score)
def _optimize_classification(self, data, target_score):
"""Optimize classification task for quality"""
# Cross-validation for robustness
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = []
for train_idx, val_idx in kfold.split(data['X']):
X_train, X_val = data['X'][train_idx], data['X'][val_idx]
y_train, y_val = data['y'][train_idx], data['y'][val_idx]
# Train with augmentation
model_copy = self._create_model_copy()
augmented_X, augmented_y = self._augment_data(X_train, y_train)
self._train_with_regularization(model_copy, augmented_X, augmented_y)
# Validate
predictions = model_copy(X_val)
score = accuracy_score(y_val.cpu(), predictions.argmax(dim=1).cpu())
cv_scores.append(score)
# Use best performing model
best_score = max(cv_scores)
# Apply confidence calibration
calibrated_predictions = self._calibrate_confidence(data['X'], data['y'])
# Quality enhancement techniques
if best_score < target_score:
calibrated_predictions = self._apply_quality_boosting(
calibrated_predictions, target_score - best_score
)
return {
'predictions': calibrated_predictions,
'confidence_score': best_score,
'quality_enhancements': ['cross_validation', 'data_augmentation', 'calibration']
}
def _apply_quality_boosting(self, predictions, score_gap):
"""Apply techniques to boost quality score"""
# Ensemble with multiple random seeds
ensemble_predictions = []
for seed in range(5):
torch.manual_seed(seed)
model_variant = self._create_model_copy()
variant_pred = model_variant(predictions)
ensemble_predictions.append(variant_pred)
# Average ensemble
boosted_predictions = torch.stack(ensemble_predictions).mean(dim=0)
# Apply temperature scaling for better calibration
temperature = 1.0 + score_gap * 0.5
boosted_predictions = torch.softmax(boosted_predictions / temperature, dim=-1)
return boosted_predictions
def _create_model_copy(self):
"""Create a copy of the base model"""
import copy
return copy.deepcopy(self.base_model)
def _augment_data(self, X, y):
"""Data augmentation techniques"""
if len(X.shape) == 4: # Image data
# Image augmentations
augmented_X = []
augmented_y = []
for x, label in zip(X, y):
augmented_X.append(x)
augmented_y.append(label)
# Random rotation
angle = torch.rand(1) * 30 - 15 # ±15 degrees
rotated = self._rotate_image(x, angle)
augmented_X.append(rotated)
augmented_y.append(label)
# Random noise
noise = torch.randn_like(x) * 0.1
noisy = torch.clamp(x + noise, 0, 1)
augmented_X.append(noisy)
augmented_y.append(label)
return torch.stack(augmented_X), torch.stack(augmented_y)
else:
# Generic augmentation for other data types
noise = torch.randn_like(X) * 0.05
augmented_X = torch.cat([X, X + noise], dim=0)
augmented_y = torch.cat([y, y], dim=0)
return augmented_X, augmented_y
def record_quality_score(self, score, task_info):
"""Record quality score for learning"""
self.quality_history.append({
'score': score,
'task_type': task_info.get('type'),
'difficulty': task_info.get('difficulty'),
'timestamp': time.time(),
'techniques_used': task_info.get('techniques', [])
})
# Analyze patterns for future optimization
self._analyze_quality_patterns()
def _analyze_quality_patterns(self):
"""Analyze historical data to improve future performance"""
if len(self.quality_history) < 10:
return
recent_scores = [h['score'] for h in self.quality_history[-10:]]
avg_score = np.mean(recent_scores)
if avg_score < 8.0:
print("Quality scores below target. Adjusting strategy...")
# Implement adaptive strategy changes
elif avg_score > 9.0:
print("Excellent quality scores! Maintaining current strategy.")
Step 4: Performance Monitoring and Analytics
Real-time Performance Dashboard
# src/performance_monitor.py
import time
import psutil
import GPUtil
import matplotlib.pyplot as plt
from dataclasses import dataclass
from typing import List, Dict
import threading
import queue
@dataclass
class PerformanceMetrics:
timestamp: float
cpu_usage: float
memory_usage: float
gpu_usage: float
gpu_memory: float
power_consumption: float
task_throughput: float
quality_score: float
earnings_rate: float
class RealTimeMonitor:
def __init__(self, update_interval=5):
self.update_interval = update_interval
self.metrics_history = []
self.is_monitoring = False
self.metrics_queue = queue.Queue()
# Performance targets
self.targets = {
'min_quality_score': 8.0,
'max_power_consumption': 500, # watts
'min_earnings_rate': 2.0, # TOS per hour
'max_gpu_temperature': 80 # celsius
}
def start_monitoring(self):
"""Start real-time monitoring"""
self.is_monitoring = True
monitor_thread = threading.Thread(target=self._monitoring_loop)
monitor_thread.daemon = True
monitor_thread.start()
print("Performance monitoring started")
def stop_monitoring(self):
"""Stop monitoring"""
self.is_monitoring = False
print("Performance monitoring stopped")
def _monitoring_loop(self):
"""Main monitoring loop"""
while self.is_monitoring:
try:
metrics = self._collect_metrics()
self.metrics_history.append(metrics)
self.metrics_queue.put(metrics)
# Check for alerts
self._check_alerts(metrics)
# Limit history size
if len(self.metrics_history) > 1000:
self.metrics_history = self.metrics_history[-1000:]
time.sleep(self.update_interval)
except Exception as e:
print(f"Monitoring error: {e}")
time.sleep(self.update_interval)
def _collect_metrics(self) -> PerformanceMetrics:
"""Collect current system metrics"""
# CPU and Memory
cpu_usage = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
memory_usage = memory.percent
# GPU metrics
gpu_usage = 0
gpu_memory = 0
try:
gpus = GPUtil.getGPUs()
if gpus:
gpu = gpus[0]
gpu_usage = gpu.load * 100
gpu_memory = gpu.memoryUtil * 100
except:
pass
# Power consumption (estimated)
power_consumption = self._estimate_power_consumption(cpu_usage, gpu_usage)
return PerformanceMetrics(
timestamp=time.time(),
cpu_usage=cpu_usage,
memory_usage=memory_usage,
gpu_usage=gpu_usage,
gpu_memory=gpu_memory,
power_consumption=power_consumption,
task_throughput=self._calculate_throughput(),
quality_score=self._get_current_quality_score(),
earnings_rate=self._calculate_earnings_rate()
)
def _estimate_power_consumption(self, cpu_usage, gpu_usage):
"""Estimate power consumption based on usage"""
base_power = 100 # Base system power
cpu_power = (cpu_usage / 100) * 65 # CPU TDP
gpu_power = 0
if gpu_usage > 0:
# Estimate based on GPU model
gpu_power = (gpu_usage / 100) * 350 # Estimated GPU power
return base_power + cpu_power + gpu_power
def _check_alerts(self, metrics: PerformanceMetrics):
"""Check for performance alerts"""
alerts = []
if metrics.quality_score < self.targets['min_quality_score']:
alerts.append(f"Quality score below target: {metrics.quality_score:.2f}")
if metrics.power_consumption > self.targets['max_power_consumption']:
alerts.append(f"Power consumption high: {metrics.power_consumption:.1f}W")
if metrics.earnings_rate < self.targets['min_earnings_rate']:
alerts.append(f"Earnings rate low: {metrics.earnings_rate:.2f} TOS/hr")
if metrics.gpu_usage > 95:
alerts.append("GPU usage critically high")
if metrics.memory_usage > 90:
alerts.append("Memory usage critically high")
for alert in alerts:
print(f"⚠️ ALERT: {alert}")
def generate_performance_report(self) -> Dict:
"""Generate comprehensive performance report"""
if not self.metrics_history:
return {"error": "No performance data available"}
recent_metrics = self.metrics_history[-100:] # Last 100 readings
report = {
'monitoring_period': {
'start': recent_metrics[0].timestamp,
'end': recent_metrics[-1].timestamp,
'duration_hours': (recent_metrics[-1].timestamp - recent_metrics[0].timestamp) / 3600
},
'averages': {
'cpu_usage': np.mean([m.cpu_usage for m in recent_metrics]),
'memory_usage': np.mean([m.memory_usage for m in recent_metrics]),
'gpu_usage': np.mean([m.gpu_usage for m in recent_metrics]),
'power_consumption': np.mean([m.power_consumption for m in recent_metrics]),
'quality_score': np.mean([m.quality_score for m in recent_metrics]),
'earnings_rate': np.mean([m.earnings_rate for m in recent_metrics])
},
'efficiency_metrics': {
'power_efficiency': np.mean([m.earnings_rate / m.power_consumption
for m in recent_metrics if m.power_consumption > 0]),
'quality_consistency': np.std([m.quality_score for m in recent_metrics]),
'uptime_percentage': self._calculate_uptime()
},
'recommendations': self._generate_recommendations(recent_metrics)
}
return report
def _generate_recommendations(self, metrics: List[PerformanceMetrics]) -> List[str]:
"""Generate optimization recommendations"""
recommendations = []
avg_quality = np.mean([m.quality_score for m in metrics])
avg_power = np.mean([m.power_consumption for m in metrics])
avg_earnings = np.mean([m.earnings_rate for m in metrics])
if avg_quality < 8.0:
recommendations.append("Consider enabling ensemble methods to improve quality scores")
if avg_power > 400:
recommendations.append("High power consumption detected. Consider optimizing GPU settings")
if avg_earnings < 2.0:
recommendations.append("Low earnings rate. Review task selection strategy")
gpu_usage_variation = np.std([m.gpu_usage for m in metrics])
if gpu_usage_variation > 20:
recommendations.append("Inconsistent GPU usage. Check for task scheduling issues")
return recommendations
def plot_performance_dashboard(self):
"""Create visual performance dashboard"""
if len(self.metrics_history) < 10:
print("Insufficient data for plotting")
return
recent_metrics = self.metrics_history[-100:]
timestamps = [m.timestamp for m in recent_metrics]
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
fig.suptitle('AI-Mining Performance Dashboard', fontsize=16)
# CPU Usage
axes[0, 0].plot(timestamps, [m.cpu_usage for m in recent_metrics])
axes[0, 0].set_title('CPU Usage (%)')
axes[0, 0].set_ylim(0, 100)
# GPU Usage
axes[0, 1].plot(timestamps, [m.gpu_usage for m in recent_metrics])
axes[0, 1].set_title('GPU Usage (%)')
axes[0, 1].set_ylim(0, 100)
# Power Consumption
axes[0, 2].plot(timestamps, [m.power_consumption for m in recent_metrics])
axes[0, 2].set_title('Power Consumption (W)')
# Quality Score
axes[1, 0].plot(timestamps, [m.quality_score for m in recent_metrics])
axes[1, 0].axhline(y=8.0, color='r', linestyle='--', label='Target')
axes[1, 0].set_title('Quality Score')
axes[1, 0].set_ylim(0, 10)
axes[1, 0].legend()
# Earnings Rate
axes[1, 1].plot(timestamps, [m.earnings_rate for m in recent_metrics])
axes[1, 1].set_title('Earnings Rate (TOS/hr)')
# Efficiency
efficiency = [m.earnings_rate / m.power_consumption * 1000
for m in recent_metrics if m.power_consumption > 0]
axes[1, 2].plot(timestamps[:len(efficiency)], efficiency)
axes[1, 2].set_title('Efficiency (TOS/kWh)')
plt.tight_layout()
plt.savefig('performance_dashboard.png', dpi=300)
plt.show()
print("Performance dashboard saved as 'performance_dashboard.png'")
Step 5: Automated Optimization System
Dynamic Parameter Tuning
# src/auto_optimizer.py
import numpy as np
from scipy.optimize import minimize
import torch
import time
from typing import Dict, List, Tuple
class AutomaticOptimizer:
"""Automatically optimize AI-Mining parameters for maximum efficiency"""
def __init__(self, client, monitor):
self.client = client
self.monitor = monitor
self.optimization_history = []
# Parameter bounds
self.parameter_bounds = {
'learning_rate': (1e-5, 1e-2),
'batch_size': (8, 128),
'model_complexity': (0.5, 2.0),
'ensemble_size': (3, 10),
'gpu_memory_fraction': (0.5, 0.95),
'task_selection_threshold': (0.1, 0.9)
}
# Current parameters
self.current_params = {
'learning_rate': 1e-3,
'batch_size': 32,
'model_complexity': 1.0,
'ensemble_size': 5,
'gpu_memory_fraction': 0.8,
'task_selection_threshold': 0.6
}
def optimize_parameters(self, optimization_target='earnings_per_watt'):
"""Automatically optimize parameters using Bayesian optimization"""
print("Starting automatic parameter optimization...")
# Define objective function
def objective(params_array):
return -self._evaluate_parameter_set(params_array, optimization_target)
# Convert current parameters to array
param_names = list(self.current_params.keys())
initial_params = np.array([self.current_params[name] for name in param_names])
bounds = [self.parameter_bounds[name] for name in param_names]
# Bayesian optimization
result = minimize(
objective,
initial_params,
method='L-BFGS-B',
bounds=bounds,
options={'maxiter': 20, 'disp': True}
)
# Update parameters
optimized_params = {name: value for name, value in zip(param_names, result.x)}
self._apply_parameters(optimized_params)
print(f"Optimization complete. Best {optimization_target}: {-result.fun:.4f}")
print(f"Optimized parameters: {optimized_params}")
return optimized_params
def _evaluate_parameter_set(self, params_array, target) -> float:
"""Evaluate a parameter set and return the target metric"""
param_names = list(self.current_params.keys())
params = {name: value for name, value in zip(param_names, params_array)}
# Apply parameters temporarily
old_params = self.current_params.copy()
self._apply_parameters(params)
try:
# Run evaluation period
start_time = time.time()
evaluation_duration = 300 # 5 minutes
metrics_sum = {
'quality_score': 0,
'earnings_rate': 0,
'power_consumption': 0,
'task_completion_rate': 0
}
measurement_count = 0
while time.time() - start_time < evaluation_duration:
# Get current metrics
current_metrics = self.monitor._collect_metrics()
metrics_sum['quality_score'] += current_metrics.quality_score
metrics_sum['earnings_rate'] += current_metrics.earnings_rate
metrics_sum['power_consumption'] += current_metrics.power_consumption
measurement_count += 1
time.sleep(10) # Measure every 10 seconds
# Calculate averages
if measurement_count > 0:
for key in metrics_sum:
metrics_sum[key] /= measurement_count
# Calculate target metric
if target == 'earnings_per_watt':
if metrics_sum['power_consumption'] > 0:
score = metrics_sum['earnings_rate'] / (metrics_sum['power_consumption'] / 1000)
else:
score = 0
elif target == 'quality_score':
score = metrics_sum['quality_score']
elif target == 'earnings_rate':
score = metrics_sum['earnings_rate']
else:
score = metrics_sum['quality_score'] * metrics_sum['earnings_rate']
# Record optimization attempt
self.optimization_history.append({
'params': params.copy(),
'score': score,
'target': target,
'timestamp': time.time()
})
return score
except Exception as e:
print(f"Evaluation error: {e}")
return 0.0
finally:
# Restore old parameters
self._apply_parameters(old_params)
def _apply_parameters(self, params: Dict):
"""Apply parameter changes to the system"""
# Update current parameters
self.current_params.update(params)
# Apply GPU memory settings
if 'gpu_memory_fraction' in params:
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Note: In practice, you might need to restart the process
# to change GPU memory allocation
# Apply model parameters
if 'learning_rate' in params or 'batch_size' in params:
# Update model training parameters
self._update_model_parameters(params)
# Apply task selection parameters
if 'task_selection_threshold' in params:
self._update_task_selection(params['task_selection_threshold'])
print(f"Applied parameters: {params}")
def _update_model_parameters(self, params):
"""Update model training parameters"""
# This would update the model configuration
# Implementation depends on your specific model setup
pass
def _update_task_selection(self, threshold):
"""Update task selection threshold"""
# Update task selector threshold
pass
def adaptive_learning_rate_schedule(self, base_lr=1e-3):
"""Implement adaptive learning rate based on performance"""
if len(self.optimization_history) < 5:
return base_lr
# Analyze recent performance
recent_scores = [h['score'] for h in self.optimization_history[-5:]]
score_trend = np.polyfit(range(len(recent_scores)), recent_scores, 1)[0]
# Adjust learning rate based on trend
if score_trend > 0:
# Performance improving, maintain or slightly increase LR
adjusted_lr = base_lr * 1.1
else:
# Performance declining, reduce LR
adjusted_lr = base_lr * 0.9
# Clip to bounds
lr_bounds = self.parameter_bounds['learning_rate']
adjusted_lr = np.clip(adjusted_lr, lr_bounds[0], lr_bounds[1])
return adjusted_lr
def schedule_optimization(self, interval_hours=6):
"""Schedule periodic optimization"""
def optimization_scheduler():
while True:
try:
print("Starting scheduled optimization...")
# Try different optimization targets
targets = ['earnings_per_watt', 'quality_score', 'earnings_rate']
best_score = -float('inf')
best_params = None
for target in targets:
params = self.optimize_parameters(target)
score = self._evaluate_parameter_set(
[params[k] for k in self.current_params.keys()],
target
)
if score > best_score:
best_score = score
best_params = params
if best_params:
self._apply_parameters(best_params)
print(f"Applied best parameters with score: {best_score:.4f}")
# Sleep until next optimization
time.sleep(interval_hours * 3600)
except Exception as e:
print(f"Scheduled optimization error: {e}")
time.sleep(3600) # Wait 1 hour before retry
# Start scheduler in background thread
import threading
scheduler_thread = threading.Thread(target=optimization_scheduler)
scheduler_thread.daemon = True
scheduler_thread.start()
print(f"Optimization scheduler started (interval: {interval_hours} hours)")
def generate_optimization_report(self) -> Dict:
"""Generate optimization performance report"""
if not self.optimization_history:
return {"error": "No optimization history available"}
history = self.optimization_history
# Best performing parameters by target
best_by_target = {}
for target in ['earnings_per_watt', 'quality_score', 'earnings_rate']:
target_history = [h for h in history if h['target'] == target]
if target_history:
best = max(target_history, key=lambda x: x['score'])
best_by_target[target] = {
'params': best['params'],
'score': best['score'],
'timestamp': best['timestamp']
}
# Parameter sensitivity analysis
param_sensitivity = self._analyze_parameter_sensitivity()
report = {
'optimization_runs': len(history),
'best_parameters_by_target': best_by_target,
'parameter_sensitivity': param_sensitivity,
'current_parameters': self.current_params,
'recommendations': self._generate_optimization_recommendations()
}
return report
def _analyze_parameter_sensitivity(self) -> Dict:
"""Analyze which parameters have the most impact on performance"""
if len(self.optimization_history) < 10:
return {}
sensitivity = {}
for param_name in self.current_params.keys():
param_values = []
scores = []
for h in self.optimization_history:
if param_name in h['params']:
param_values.append(h['params'][param_name])
scores.append(h['score'])
if len(param_values) > 5:
# Calculate correlation between parameter value and score
correlation = np.corrcoef(param_values, scores)[0, 1]
sensitivity[param_name] = {
'correlation': correlation,
'impact': abs(correlation),
'recommendation': 'increase' if correlation > 0 else 'decrease'
}
return sensitivity
def _generate_optimization_recommendations(self) -> List[str]:
"""Generate recommendations based on optimization history"""
recommendations = []
if len(self.optimization_history) < 5:
recommendations.append("Run more optimization cycles for better insights")
return recommendations
# Analyze recent trends
recent_scores = [h['score'] for h in self.optimization_history[-10:]]
score_improvement = (recent_scores[-1] - recent_scores[0]) / recent_scores[0] * 100
if score_improvement > 10:
recommendations.append("Optimization is working well. Continue current strategy.")
elif score_improvement < -5:
recommendations.append("Performance declining. Consider manual review of parameters.")
else:
recommendations.append("Performance stable. Try more aggressive optimization.")
# Parameter-specific recommendations
sensitivity = self._analyze_parameter_sensitivity()
for param, data in sensitivity.items():
if data['impact'] > 0.5:
recommendations.append(
f"Parameter '{param}' has high impact. Consider {data['recommendation']}ing it."
)
return recommendations
💡 Best Practices Summary
Hardware Optimization
- GPU Memory Management: Use 80% of available GPU memory
- Mixed Precision: Enable FP16 for 2x performance improvement
- Batch Size Optimization: Find optimal batch size for your hardware
- Temperature Monitoring: Keep GPU below 80°C for stability
Algorithm Optimization
- Ensemble Methods: Use 3-5 models for better quality scores
- Cross-validation: Always validate on unseen data
- Data Augmentation: Increase training data diversity
- Model Calibration: Improve confidence estimates
Task Selection Strategy
- Profitability Analysis: Consider reward/time/energy ratios
- Hardware Matching: Choose tasks suited to your hardware
- Quality Score History: Track performance by task type
- Dynamic Adjustment: Adapt strategy based on network conditions
Energy Efficiency
- Power Monitoring: Track watts per TOS earned
- Optimal Utilization: Balance performance vs. consumption
- Thermal Management: Maintain optimal operating temperatures
- Scheduling: Run during off-peak electricity hours
🔧 Troubleshooting
Common Performance Issues
Low Quality Scores (< 7.0)
- Enable ensemble methods
- Increase cross-validation folds
- Apply data augmentation
- Check model calibration
High Power Consumption
- Reduce GPU memory usage
- Lower model complexity
- Enable power limiting
- Check for memory leaks
Task Selection Problems
- Analyze historical performance
- Adjust selection thresholds
- Review hardware capabilities
- Monitor network competition
Debug Commands
# Monitor GPU usage
nvidia-smi -l 1
# Check memory usage
ps aux --sort=-%mem | head
# Monitor network traffic
iftop
# Check disk I/O
iotop
🚀 Advanced Strategies
Multi-GPU Setup
# Enable multi-GPU training
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
print(f"Using {torch.cuda.device_count()} GPUs")
Custom Model Architectures
- Implement task-specific optimizations
- Use knowledge distillation for faster inference
- Apply neural architecture search (NAS)
Economic Optimization
- Dynamic task switching based on profitability
- Pool mining coordination
- Arbitrage opportunities between task types
Congratulations! 🎉 You’ve now mastered AI-Mining optimization on TOS Network. Your setup should be achieving quality scores above 8.5 while maximizing energy efficiency and earnings.
“Don’t Trust, Verify it” - All optimization results are transparently tracked and verifiable on the TOS Network!
Last updated on