Skip to Content
TutorialsAI-Mining Optimization Tutorial

AI-Mining Optimization Tutorial

Master the art of AI-Mining on TOS Network by optimizing your hardware, algorithms, and strategies to maximize both performance and earnings.

🎯 Learning Objectives

By the end of this tutorial, you will:

  • Understand TOS Network’s AI-Mining architecture
  • Optimize hardware configuration for maximum efficiency
  • Implement advanced AI algorithms for better quality scores
  • Monitor and improve mining performance
  • Maximize earnings through strategic task selection

⏱️ Estimated Time

2 hours (plus ongoing optimization)

🛠️ Prerequisites

Required Knowledge

  • Basic understanding of machine learning concepts
  • Python programming (intermediate level)
  • Basic understanding of blockchain mining
  • GPU/CPU optimization experience (helpful but not required)

Hardware Requirements

  • Minimum: 8GB RAM, GTX 1060 or equivalent
  • Recommended: 16GB+ RAM, RTX 3080 or better
  • Optimal: 32GB+ RAM, RTX 4090 or A100

Software Setup

  • Python 3.9+
  • CUDA 11.8+ (for GPU acceleration)
  • TOS AI-Mining Client
  • Required Python packages
pip install torch torchvision tensorflow-gpu tos-ai-mining-sdk

📝 Tutorial Overview

What We’ll Optimize

  • Hardware configuration and monitoring
  • AI algorithm performance
  • Task selection strategies
  • Quality score improvement
  • Energy efficiency
  • Earnings maximization

Step 1: Environment Setup

Install TOS AI-Mining SDK

# Create dedicated environment python -m venv tos-ai-mining source tos-ai-mining/bin/activate # Linux/Mac # tos-ai-mining\Scripts\activate # Windows # Install required packages pip install tos-ai-mining-sdk torch torchvision tensorflow-gpu numpy pandas matplotlib

Initialize AI-Mining Client

# config/ai_mining_config.py AI_MINING_CONFIG = { 'network': 'mainnet', 'rpc_url': 'https://rpc.tos.network', 'worker_address': 'your_tos_wallet_address', 'private_key': 'your_private_key', # Hardware configuration 'hardware': { 'gpu_enabled': True, 'max_gpu_memory': 0.8, # Use 80% of GPU memory 'cpu_threads': -1, # Use all CPU cores 'mixed_precision': True, # Enable FP16 for better performance }, # Task preferences 'task_preferences': { 'min_reward': 1.0, # Minimum reward in TOS 'max_duration': 3600, # Maximum task duration in seconds 'preferred_types': ['machine_learning', 'computer_vision', 'nlp'], 'avoid_types': ['blockchain_analysis'] # Tasks to avoid }, # Quality optimization 'quality_settings': { 'target_score': 8.5, # Target quality score 'verification_enabled': True, 'ensemble_methods': True, 'cross_validation': True } }

Basic Client Setup

# src/ai_mining_client.py import torch import tensorflow as tf from tos_ai_mining import TOSAIMiningClient from config.ai_mining_config import AI_MINING_CONFIG class OptimizedAIMiningClient: def __init__(self, config): self.config = config self.client = TOSAIMiningClient( rpc_url=config['rpc_url'], worker_address=config['worker_address'], private_key=config['private_key'] ) self.setup_hardware() self.performance_metrics = { 'tasks_completed': 0, 'total_earnings': 0.0, 'average_quality_score': 0.0, 'energy_consumed': 0.0 } def setup_hardware(self): """Optimize hardware configuration""" # GPU optimization if self.config['hardware']['gpu_enabled'] and torch.cuda.is_available(): torch.cuda.empty_cache() # Set memory fraction if hasattr(torch.cuda, 'set_per_process_memory_fraction'): torch.cuda.set_per_process_memory_fraction( self.config['hardware']['max_gpu_memory'] ) print(f"GPU: {torch.cuda.get_device_name()}") print(f"CUDA Version: {torch.version.cuda}") print(f"Available GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # TensorFlow GPU configuration gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) # Set memory limit memory_limit = int(tf.config.experimental.get_device_details(gpus[0])['device_memory_size'] * self.config['hardware']['max_gpu_memory']) tf.config.experimental.set_memory_limit(gpus[0], memory_limit) except RuntimeError as e: print(f"GPU configuration error: {e}") # CPU optimization torch.set_num_threads(self.config['hardware']['cpu_threads']) tf.config.threading.set_intra_op_parallelism_threads(self.config['hardware']['cpu_threads']) print("Hardware optimization completed") async def connect(self): """Connect to TOS AI-Mining network""" await self.client.connect() print("Connected to TOS AI-Mining network")

Step 2: Task Analysis and Selection

Smart Task Selection Algorithm

# src/task_selector.py import numpy as np from dataclasses import dataclass from typing import List, Dict @dataclass class TaskMetrics: task_id: str reward: float difficulty: str estimated_duration: int success_rate: float average_quality_score: float energy_cost: float @property def reward_per_hour(self) -> float: return (self.reward * self.success_rate) / (self.estimated_duration / 3600) @property def energy_efficiency(self) -> float: return self.reward_per_hour / self.energy_cost if self.energy_cost > 0 else 0 @property def score(self) -> float: # Weighted scoring algorithm weights = { 'reward_per_hour': 0.4, 'energy_efficiency': 0.3, 'success_rate': 0.2, 'quality_score': 0.1 } normalized_scores = { 'reward_per_hour': min(self.reward_per_hour / 10, 1), 'energy_efficiency': min(self.energy_efficiency / 5, 1), 'success_rate': self.success_rate, 'quality_score': self.average_quality_score / 10 } return sum(weights[key] * normalized_scores[key] for key in weights) class IntelligentTaskSelector: def __init__(self, client, config): self.client = client self.config = config self.task_history = [] self.performance_data = {} async def get_optimal_tasks(self, limit: int = 5) -> List[TaskMetrics]: """Select optimal tasks based on profitability and hardware capabilities""" available_tasks = await self.client.get_available_tasks() # Analyze each task task_metrics = [] for task in available_tasks: metrics = await self.analyze_task(task) if self.meets_criteria(metrics): task_metrics.append(metrics) # Sort by optimization score task_metrics.sort(key=lambda x: x.score, reverse=True) return task_metrics[:limit] async def analyze_task(self, task) -> TaskMetrics: """Analyze task profitability and feasibility""" # Get historical performance data historical_performance = self.get_historical_performance(task['type']) # Estimate duration based on hardware and task complexity estimated_duration = self.estimate_duration(task) # Calculate energy cost energy_cost = self.estimate_energy_cost(task, estimated_duration) return TaskMetrics( task_id=task['task_id'], reward=float(task['reward']), difficulty=task['difficulty'], estimated_duration=estimated_duration, success_rate=historical_performance.get('success_rate', 0.8), average_quality_score=historical_performance.get('avg_quality', 7.0), energy_cost=energy_cost ) def meets_criteria(self, metrics: TaskMetrics) -> bool: """Check if task meets minimum criteria""" criteria = self.config['task_preferences'] return ( metrics.reward >= criteria['min_reward'] and metrics.estimated_duration <= criteria['max_duration'] and metrics.success_rate >= 0.6 and metrics.energy_efficiency >= 0.5 ) def estimate_duration(self, task) -> int: """Estimate task completion time based on hardware and complexity""" base_duration = task.get('estimated_time', 3600) # Hardware performance factors gpu_factor = 1.0 if torch.cuda.is_available(): gpu_name = torch.cuda.get_device_name() if 'RTX 4090' in gpu_name or 'A100' in gpu_name: gpu_factor = 0.5 elif 'RTX 3080' in gpu_name or 'RTX 3090' in gpu_name: gpu_factor = 0.7 elif 'RTX 2080' in gpu_name or 'GTX 1080' in gpu_name: gpu_factor = 1.2 # Task complexity factors complexity_factors = { 'easy': 0.8, 'medium': 1.0, 'hard': 1.5, 'expert': 2.0 } complexity_factor = complexity_factors.get(task['difficulty'], 1.0) return int(base_duration * gpu_factor * complexity_factor) def estimate_energy_cost(self, task, duration) -> float: """Estimate energy consumption for task""" # Base power consumption (watts) base_power = 100 # CPU base if torch.cuda.is_available(): gpu_name = torch.cuda.get_device_name() gpu_power = { 'RTX 4090': 450, 'RTX 3080': 320, 'RTX 3070': 220, 'GTX 1060': 120 } for model, power in gpu_power.items(): if model in gpu_name: base_power += power break # Convert to kWh energy_kwh = (base_power * duration / 3600) / 1000 # Assume $0.10 per kWh return energy_kwh * 0.10 def get_historical_performance(self, task_type) -> Dict: """Get historical performance data for task type""" return self.performance_data.get(task_type, { 'success_rate': 0.8, 'avg_quality': 7.0, 'avg_duration': 3600 })

Step 3: Advanced AI Algorithm Implementation

High-Performance Model Architecture

# src/optimized_models.py import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import tensorflow as tf from tensorflow.keras import layers, Model class OptimizedResNet(nn.Module): """Optimized ResNet for AI-Mining tasks with mixed precision support""" def __init__(self, num_classes=10, use_mixed_precision=True): super(OptimizedResNet, self).__init__() self.use_mixed_precision = use_mixed_precision # Efficient stem self.stem = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) # Residual blocks with different channel sizes self.layer1 = self._make_layer(64, 64, 2) self.layer2 = self._make_layer(64, 128, 2, stride=2) self.layer3 = self._make_layer(128, 256, 2, stride=2) self.layer4 = self._make_layer(256, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) # Initialize weights self._initialize_weights() def _make_layer(self, in_channels, out_channels, blocks, stride=1): layers = [] layers.append(OptimizedBasicBlock(in_channels, out_channels, stride)) for _ in range(1, blocks): layers.append(OptimizedBasicBlock(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): with torch.cuda.amp.autocast(enabled=self.use_mixed_precision): x = self.stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) class OptimizedBasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(OptimizedBasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): residual = self.shortcut(x) out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += residual out = F.relu(out) return out class EfficientTransformer(nn.Module): """Memory-efficient transformer for NLP tasks""" def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, max_seq_len=512): super(EfficientTransformer, self).__init__() self.d_model = d_model self.embedding = nn.Embedding(vocab_size, d_model) self.pos_encoding = self._generate_positional_encoding(max_seq_len, d_model) # Use memory-efficient attention encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=d_model * 4, dropout=0.1, activation='gelu', batch_first=True ) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers) self.output_layer = nn.Linear(d_model, vocab_size) # Gradient checkpointing for memory efficiency self.use_checkpoint = True def _generate_positional_encoding(self, max_len, d_model): pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe.unsqueeze(0) def forward(self, x, mask=None): seq_len = x.size(1) # Add positional encoding x = self.embedding(x) * torch.sqrt(torch.tensor(self.d_model, dtype=torch.float)) x = x + self.pos_encoding[:, :seq_len, :].to(x.device) # Apply transformer with gradient checkpointing if self.use_checkpoint and self.training: x = torch.utils.checkpoint.checkpoint(self.transformer, x, mask) else: x = self.transformer(x, mask) return self.output_layer(x)

Ensemble Methods for Higher Quality Scores

# src/ensemble_methods.py import torch import numpy as np from typing import List, Dict, Any from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score, mean_squared_error class AdvancedEnsemble: """Advanced ensemble methods for maximizing quality scores""" def __init__(self, models: List[torch.nn.Module], weights: List[float] = None): self.models = models self.weights = weights or [1.0] * len(models) self.calibration_data = None def weighted_prediction(self, inputs): """Weighted ensemble prediction""" predictions = [] for model, weight in zip(self.models, self.weights): with torch.no_grad(): pred = model(inputs) if isinstance(pred, torch.Tensor): pred = torch.softmax(pred, dim=-1) predictions.append(pred * weight) # Weighted average ensemble_pred = torch.stack(predictions).sum(dim=0) / sum(self.weights) return ensemble_pred def uncertainty_weighted_prediction(self, inputs): """Uncertainty-based ensemble weighting""" predictions = [] uncertainties = [] for model in self.models: # Enable dropout for uncertainty estimation model.train() # Multiple forward passes mc_predictions = [] for _ in range(10): with torch.no_grad(): pred = model(inputs) mc_predictions.append(torch.softmax(pred, dim=-1)) model.eval() # Calculate mean and uncertainty mc_predictions = torch.stack(mc_predictions) mean_pred = mc_predictions.mean(dim=0) uncertainty = mc_predictions.std(dim=0).mean(dim=-1) predictions.append(mean_pred) uncertainties.append(uncertainty) # Weight by inverse uncertainty uncertainties = torch.stack(uncertainties) weights = 1.0 / (uncertainties + 1e-6) weights = weights / weights.sum(dim=0) # Weighted prediction predictions = torch.stack(predictions) ensemble_pred = (predictions * weights.unsqueeze(-1)).sum(dim=0) return ensemble_pred def temperature_scaling_calibration(self, validation_loader): """Calibrate model confidence using temperature scaling""" all_outputs = [] all_labels = [] # Collect validation data for inputs, labels in validation_loader: outputs = self.weighted_prediction(inputs) all_outputs.append(outputs) all_labels.append(labels) all_outputs = torch.cat(all_outputs, dim=0) all_labels = torch.cat(all_labels, dim=0) # Find optimal temperature temperature = nn.Parameter(torch.ones(1) * 1.5) optimizer = torch.optim.LBFGS([temperature], lr=0.01, max_iter=50) def eval(): optimizer.zero_grad() scaled_outputs = all_outputs / temperature loss = F.cross_entropy(scaled_outputs, all_labels) loss.backward() return loss optimizer.step(eval) self.temperature = temperature.item() print(f"Optimal temperature: {self.temperature:.3f}") def adaptive_ensemble_weights(self, validation_loader): """Learn optimal ensemble weights on validation data""" # Collect individual model predictions model_predictions = [[] for _ in self.models] all_labels = [] for inputs, labels in validation_loader: for i, model in enumerate(self.models): with torch.no_grad(): pred = model(inputs) model_predictions[i].append(torch.softmax(pred, dim=-1)) all_labels.append(labels) # Concatenate predictions for i in range(len(self.models)): model_predictions[i] = torch.cat(model_predictions[i], dim=0) all_labels = torch.cat(all_labels, dim=0) # Optimize weights using validation performance weights = nn.Parameter(torch.ones(len(self.models)) / len(self.models)) optimizer = torch.optim.Adam([weights], lr=0.01) for epoch in range(100): optimizer.zero_grad() # Normalize weights normalized_weights = F.softmax(weights, dim=0) # Weighted ensemble prediction ensemble_pred = sum(pred * w for pred, w in zip(model_predictions, normalized_weights)) # Loss loss = F.cross_entropy(torch.log(ensemble_pred + 1e-8), all_labels) loss.backward() optimizer.step() self.weights = F.softmax(weights, dim=0).detach().tolist() print(f"Optimized weights: {self.weights}") class QualityScoreOptimizer: """Optimize solutions specifically for TOS quality scoring""" def __init__(self, base_model, task_type): self.base_model = base_model self.task_type = task_type self.quality_history = [] def optimize_for_quality(self, data, target_score=8.5): """Optimize solution to achieve target quality score""" if self.task_type == 'classification': return self._optimize_classification(data, target_score) elif self.task_type == 'regression': return self._optimize_regression(data, target_score) elif self.task_type == 'generation': return self._optimize_generation(data, target_score) else: return self._generic_optimization(data, target_score) def _optimize_classification(self, data, target_score): """Optimize classification task for quality""" # Cross-validation for robustness kfold = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_idx, val_idx in kfold.split(data['X']): X_train, X_val = data['X'][train_idx], data['X'][val_idx] y_train, y_val = data['y'][train_idx], data['y'][val_idx] # Train with augmentation model_copy = self._create_model_copy() augmented_X, augmented_y = self._augment_data(X_train, y_train) self._train_with_regularization(model_copy, augmented_X, augmented_y) # Validate predictions = model_copy(X_val) score = accuracy_score(y_val.cpu(), predictions.argmax(dim=1).cpu()) cv_scores.append(score) # Use best performing model best_score = max(cv_scores) # Apply confidence calibration calibrated_predictions = self._calibrate_confidence(data['X'], data['y']) # Quality enhancement techniques if best_score < target_score: calibrated_predictions = self._apply_quality_boosting( calibrated_predictions, target_score - best_score ) return { 'predictions': calibrated_predictions, 'confidence_score': best_score, 'quality_enhancements': ['cross_validation', 'data_augmentation', 'calibration'] } def _apply_quality_boosting(self, predictions, score_gap): """Apply techniques to boost quality score""" # Ensemble with multiple random seeds ensemble_predictions = [] for seed in range(5): torch.manual_seed(seed) model_variant = self._create_model_copy() variant_pred = model_variant(predictions) ensemble_predictions.append(variant_pred) # Average ensemble boosted_predictions = torch.stack(ensemble_predictions).mean(dim=0) # Apply temperature scaling for better calibration temperature = 1.0 + score_gap * 0.5 boosted_predictions = torch.softmax(boosted_predictions / temperature, dim=-1) return boosted_predictions def _create_model_copy(self): """Create a copy of the base model""" import copy return copy.deepcopy(self.base_model) def _augment_data(self, X, y): """Data augmentation techniques""" if len(X.shape) == 4: # Image data # Image augmentations augmented_X = [] augmented_y = [] for x, label in zip(X, y): augmented_X.append(x) augmented_y.append(label) # Random rotation angle = torch.rand(1) * 30 - 15 # ±15 degrees rotated = self._rotate_image(x, angle) augmented_X.append(rotated) augmented_y.append(label) # Random noise noise = torch.randn_like(x) * 0.1 noisy = torch.clamp(x + noise, 0, 1) augmented_X.append(noisy) augmented_y.append(label) return torch.stack(augmented_X), torch.stack(augmented_y) else: # Generic augmentation for other data types noise = torch.randn_like(X) * 0.05 augmented_X = torch.cat([X, X + noise], dim=0) augmented_y = torch.cat([y, y], dim=0) return augmented_X, augmented_y def record_quality_score(self, score, task_info): """Record quality score for learning""" self.quality_history.append({ 'score': score, 'task_type': task_info.get('type'), 'difficulty': task_info.get('difficulty'), 'timestamp': time.time(), 'techniques_used': task_info.get('techniques', []) }) # Analyze patterns for future optimization self._analyze_quality_patterns() def _analyze_quality_patterns(self): """Analyze historical data to improve future performance""" if len(self.quality_history) < 10: return recent_scores = [h['score'] for h in self.quality_history[-10:]] avg_score = np.mean(recent_scores) if avg_score < 8.0: print("Quality scores below target. Adjusting strategy...") # Implement adaptive strategy changes elif avg_score > 9.0: print("Excellent quality scores! Maintaining current strategy.")

Step 4: Performance Monitoring and Analytics

Real-time Performance Dashboard

# src/performance_monitor.py import time import psutil import GPUtil import matplotlib.pyplot as plt from dataclasses import dataclass from typing import List, Dict import threading import queue @dataclass class PerformanceMetrics: timestamp: float cpu_usage: float memory_usage: float gpu_usage: float gpu_memory: float power_consumption: float task_throughput: float quality_score: float earnings_rate: float class RealTimeMonitor: def __init__(self, update_interval=5): self.update_interval = update_interval self.metrics_history = [] self.is_monitoring = False self.metrics_queue = queue.Queue() # Performance targets self.targets = { 'min_quality_score': 8.0, 'max_power_consumption': 500, # watts 'min_earnings_rate': 2.0, # TOS per hour 'max_gpu_temperature': 80 # celsius } def start_monitoring(self): """Start real-time monitoring""" self.is_monitoring = True monitor_thread = threading.Thread(target=self._monitoring_loop) monitor_thread.daemon = True monitor_thread.start() print("Performance monitoring started") def stop_monitoring(self): """Stop monitoring""" self.is_monitoring = False print("Performance monitoring stopped") def _monitoring_loop(self): """Main monitoring loop""" while self.is_monitoring: try: metrics = self._collect_metrics() self.metrics_history.append(metrics) self.metrics_queue.put(metrics) # Check for alerts self._check_alerts(metrics) # Limit history size if len(self.metrics_history) > 1000: self.metrics_history = self.metrics_history[-1000:] time.sleep(self.update_interval) except Exception as e: print(f"Monitoring error: {e}") time.sleep(self.update_interval) def _collect_metrics(self) -> PerformanceMetrics: """Collect current system metrics""" # CPU and Memory cpu_usage = psutil.cpu_percent(interval=1) memory = psutil.virtual_memory() memory_usage = memory.percent # GPU metrics gpu_usage = 0 gpu_memory = 0 try: gpus = GPUtil.getGPUs() if gpus: gpu = gpus[0] gpu_usage = gpu.load * 100 gpu_memory = gpu.memoryUtil * 100 except: pass # Power consumption (estimated) power_consumption = self._estimate_power_consumption(cpu_usage, gpu_usage) return PerformanceMetrics( timestamp=time.time(), cpu_usage=cpu_usage, memory_usage=memory_usage, gpu_usage=gpu_usage, gpu_memory=gpu_memory, power_consumption=power_consumption, task_throughput=self._calculate_throughput(), quality_score=self._get_current_quality_score(), earnings_rate=self._calculate_earnings_rate() ) def _estimate_power_consumption(self, cpu_usage, gpu_usage): """Estimate power consumption based on usage""" base_power = 100 # Base system power cpu_power = (cpu_usage / 100) * 65 # CPU TDP gpu_power = 0 if gpu_usage > 0: # Estimate based on GPU model gpu_power = (gpu_usage / 100) * 350 # Estimated GPU power return base_power + cpu_power + gpu_power def _check_alerts(self, metrics: PerformanceMetrics): """Check for performance alerts""" alerts = [] if metrics.quality_score < self.targets['min_quality_score']: alerts.append(f"Quality score below target: {metrics.quality_score:.2f}") if metrics.power_consumption > self.targets['max_power_consumption']: alerts.append(f"Power consumption high: {metrics.power_consumption:.1f}W") if metrics.earnings_rate < self.targets['min_earnings_rate']: alerts.append(f"Earnings rate low: {metrics.earnings_rate:.2f} TOS/hr") if metrics.gpu_usage > 95: alerts.append("GPU usage critically high") if metrics.memory_usage > 90: alerts.append("Memory usage critically high") for alert in alerts: print(f"⚠️ ALERT: {alert}") def generate_performance_report(self) -> Dict: """Generate comprehensive performance report""" if not self.metrics_history: return {"error": "No performance data available"} recent_metrics = self.metrics_history[-100:] # Last 100 readings report = { 'monitoring_period': { 'start': recent_metrics[0].timestamp, 'end': recent_metrics[-1].timestamp, 'duration_hours': (recent_metrics[-1].timestamp - recent_metrics[0].timestamp) / 3600 }, 'averages': { 'cpu_usage': np.mean([m.cpu_usage for m in recent_metrics]), 'memory_usage': np.mean([m.memory_usage for m in recent_metrics]), 'gpu_usage': np.mean([m.gpu_usage for m in recent_metrics]), 'power_consumption': np.mean([m.power_consumption for m in recent_metrics]), 'quality_score': np.mean([m.quality_score for m in recent_metrics]), 'earnings_rate': np.mean([m.earnings_rate for m in recent_metrics]) }, 'efficiency_metrics': { 'power_efficiency': np.mean([m.earnings_rate / m.power_consumption for m in recent_metrics if m.power_consumption > 0]), 'quality_consistency': np.std([m.quality_score for m in recent_metrics]), 'uptime_percentage': self._calculate_uptime() }, 'recommendations': self._generate_recommendations(recent_metrics) } return report def _generate_recommendations(self, metrics: List[PerformanceMetrics]) -> List[str]: """Generate optimization recommendations""" recommendations = [] avg_quality = np.mean([m.quality_score for m in metrics]) avg_power = np.mean([m.power_consumption for m in metrics]) avg_earnings = np.mean([m.earnings_rate for m in metrics]) if avg_quality < 8.0: recommendations.append("Consider enabling ensemble methods to improve quality scores") if avg_power > 400: recommendations.append("High power consumption detected. Consider optimizing GPU settings") if avg_earnings < 2.0: recommendations.append("Low earnings rate. Review task selection strategy") gpu_usage_variation = np.std([m.gpu_usage for m in metrics]) if gpu_usage_variation > 20: recommendations.append("Inconsistent GPU usage. Check for task scheduling issues") return recommendations def plot_performance_dashboard(self): """Create visual performance dashboard""" if len(self.metrics_history) < 10: print("Insufficient data for plotting") return recent_metrics = self.metrics_history[-100:] timestamps = [m.timestamp for m in recent_metrics] fig, axes = plt.subplots(2, 3, figsize=(15, 10)) fig.suptitle('AI-Mining Performance Dashboard', fontsize=16) # CPU Usage axes[0, 0].plot(timestamps, [m.cpu_usage for m in recent_metrics]) axes[0, 0].set_title('CPU Usage (%)') axes[0, 0].set_ylim(0, 100) # GPU Usage axes[0, 1].plot(timestamps, [m.gpu_usage for m in recent_metrics]) axes[0, 1].set_title('GPU Usage (%)') axes[0, 1].set_ylim(0, 100) # Power Consumption axes[0, 2].plot(timestamps, [m.power_consumption for m in recent_metrics]) axes[0, 2].set_title('Power Consumption (W)') # Quality Score axes[1, 0].plot(timestamps, [m.quality_score for m in recent_metrics]) axes[1, 0].axhline(y=8.0, color='r', linestyle='--', label='Target') axes[1, 0].set_title('Quality Score') axes[1, 0].set_ylim(0, 10) axes[1, 0].legend() # Earnings Rate axes[1, 1].plot(timestamps, [m.earnings_rate for m in recent_metrics]) axes[1, 1].set_title('Earnings Rate (TOS/hr)') # Efficiency efficiency = [m.earnings_rate / m.power_consumption * 1000 for m in recent_metrics if m.power_consumption > 0] axes[1, 2].plot(timestamps[:len(efficiency)], efficiency) axes[1, 2].set_title('Efficiency (TOS/kWh)') plt.tight_layout() plt.savefig('performance_dashboard.png', dpi=300) plt.show() print("Performance dashboard saved as 'performance_dashboard.png'")

Step 5: Automated Optimization System

Dynamic Parameter Tuning

# src/auto_optimizer.py import numpy as np from scipy.optimize import minimize import torch import time from typing import Dict, List, Tuple class AutomaticOptimizer: """Automatically optimize AI-Mining parameters for maximum efficiency""" def __init__(self, client, monitor): self.client = client self.monitor = monitor self.optimization_history = [] # Parameter bounds self.parameter_bounds = { 'learning_rate': (1e-5, 1e-2), 'batch_size': (8, 128), 'model_complexity': (0.5, 2.0), 'ensemble_size': (3, 10), 'gpu_memory_fraction': (0.5, 0.95), 'task_selection_threshold': (0.1, 0.9) } # Current parameters self.current_params = { 'learning_rate': 1e-3, 'batch_size': 32, 'model_complexity': 1.0, 'ensemble_size': 5, 'gpu_memory_fraction': 0.8, 'task_selection_threshold': 0.6 } def optimize_parameters(self, optimization_target='earnings_per_watt'): """Automatically optimize parameters using Bayesian optimization""" print("Starting automatic parameter optimization...") # Define objective function def objective(params_array): return -self._evaluate_parameter_set(params_array, optimization_target) # Convert current parameters to array param_names = list(self.current_params.keys()) initial_params = np.array([self.current_params[name] for name in param_names]) bounds = [self.parameter_bounds[name] for name in param_names] # Bayesian optimization result = minimize( objective, initial_params, method='L-BFGS-B', bounds=bounds, options={'maxiter': 20, 'disp': True} ) # Update parameters optimized_params = {name: value for name, value in zip(param_names, result.x)} self._apply_parameters(optimized_params) print(f"Optimization complete. Best {optimization_target}: {-result.fun:.4f}") print(f"Optimized parameters: {optimized_params}") return optimized_params def _evaluate_parameter_set(self, params_array, target) -> float: """Evaluate a parameter set and return the target metric""" param_names = list(self.current_params.keys()) params = {name: value for name, value in zip(param_names, params_array)} # Apply parameters temporarily old_params = self.current_params.copy() self._apply_parameters(params) try: # Run evaluation period start_time = time.time() evaluation_duration = 300 # 5 minutes metrics_sum = { 'quality_score': 0, 'earnings_rate': 0, 'power_consumption': 0, 'task_completion_rate': 0 } measurement_count = 0 while time.time() - start_time < evaluation_duration: # Get current metrics current_metrics = self.monitor._collect_metrics() metrics_sum['quality_score'] += current_metrics.quality_score metrics_sum['earnings_rate'] += current_metrics.earnings_rate metrics_sum['power_consumption'] += current_metrics.power_consumption measurement_count += 1 time.sleep(10) # Measure every 10 seconds # Calculate averages if measurement_count > 0: for key in metrics_sum: metrics_sum[key] /= measurement_count # Calculate target metric if target == 'earnings_per_watt': if metrics_sum['power_consumption'] > 0: score = metrics_sum['earnings_rate'] / (metrics_sum['power_consumption'] / 1000) else: score = 0 elif target == 'quality_score': score = metrics_sum['quality_score'] elif target == 'earnings_rate': score = metrics_sum['earnings_rate'] else: score = metrics_sum['quality_score'] * metrics_sum['earnings_rate'] # Record optimization attempt self.optimization_history.append({ 'params': params.copy(), 'score': score, 'target': target, 'timestamp': time.time() }) return score except Exception as e: print(f"Evaluation error: {e}") return 0.0 finally: # Restore old parameters self._apply_parameters(old_params) def _apply_parameters(self, params: Dict): """Apply parameter changes to the system""" # Update current parameters self.current_params.update(params) # Apply GPU memory settings if 'gpu_memory_fraction' in params: if torch.cuda.is_available(): torch.cuda.empty_cache() # Note: In practice, you might need to restart the process # to change GPU memory allocation # Apply model parameters if 'learning_rate' in params or 'batch_size' in params: # Update model training parameters self._update_model_parameters(params) # Apply task selection parameters if 'task_selection_threshold' in params: self._update_task_selection(params['task_selection_threshold']) print(f"Applied parameters: {params}") def _update_model_parameters(self, params): """Update model training parameters""" # This would update the model configuration # Implementation depends on your specific model setup pass def _update_task_selection(self, threshold): """Update task selection threshold""" # Update task selector threshold pass def adaptive_learning_rate_schedule(self, base_lr=1e-3): """Implement adaptive learning rate based on performance""" if len(self.optimization_history) < 5: return base_lr # Analyze recent performance recent_scores = [h['score'] for h in self.optimization_history[-5:]] score_trend = np.polyfit(range(len(recent_scores)), recent_scores, 1)[0] # Adjust learning rate based on trend if score_trend > 0: # Performance improving, maintain or slightly increase LR adjusted_lr = base_lr * 1.1 else: # Performance declining, reduce LR adjusted_lr = base_lr * 0.9 # Clip to bounds lr_bounds = self.parameter_bounds['learning_rate'] adjusted_lr = np.clip(adjusted_lr, lr_bounds[0], lr_bounds[1]) return adjusted_lr def schedule_optimization(self, interval_hours=6): """Schedule periodic optimization""" def optimization_scheduler(): while True: try: print("Starting scheduled optimization...") # Try different optimization targets targets = ['earnings_per_watt', 'quality_score', 'earnings_rate'] best_score = -float('inf') best_params = None for target in targets: params = self.optimize_parameters(target) score = self._evaluate_parameter_set( [params[k] for k in self.current_params.keys()], target ) if score > best_score: best_score = score best_params = params if best_params: self._apply_parameters(best_params) print(f"Applied best parameters with score: {best_score:.4f}") # Sleep until next optimization time.sleep(interval_hours * 3600) except Exception as e: print(f"Scheduled optimization error: {e}") time.sleep(3600) # Wait 1 hour before retry # Start scheduler in background thread import threading scheduler_thread = threading.Thread(target=optimization_scheduler) scheduler_thread.daemon = True scheduler_thread.start() print(f"Optimization scheduler started (interval: {interval_hours} hours)") def generate_optimization_report(self) -> Dict: """Generate optimization performance report""" if not self.optimization_history: return {"error": "No optimization history available"} history = self.optimization_history # Best performing parameters by target best_by_target = {} for target in ['earnings_per_watt', 'quality_score', 'earnings_rate']: target_history = [h for h in history if h['target'] == target] if target_history: best = max(target_history, key=lambda x: x['score']) best_by_target[target] = { 'params': best['params'], 'score': best['score'], 'timestamp': best['timestamp'] } # Parameter sensitivity analysis param_sensitivity = self._analyze_parameter_sensitivity() report = { 'optimization_runs': len(history), 'best_parameters_by_target': best_by_target, 'parameter_sensitivity': param_sensitivity, 'current_parameters': self.current_params, 'recommendations': self._generate_optimization_recommendations() } return report def _analyze_parameter_sensitivity(self) -> Dict: """Analyze which parameters have the most impact on performance""" if len(self.optimization_history) < 10: return {} sensitivity = {} for param_name in self.current_params.keys(): param_values = [] scores = [] for h in self.optimization_history: if param_name in h['params']: param_values.append(h['params'][param_name]) scores.append(h['score']) if len(param_values) > 5: # Calculate correlation between parameter value and score correlation = np.corrcoef(param_values, scores)[0, 1] sensitivity[param_name] = { 'correlation': correlation, 'impact': abs(correlation), 'recommendation': 'increase' if correlation > 0 else 'decrease' } return sensitivity def _generate_optimization_recommendations(self) -> List[str]: """Generate recommendations based on optimization history""" recommendations = [] if len(self.optimization_history) < 5: recommendations.append("Run more optimization cycles for better insights") return recommendations # Analyze recent trends recent_scores = [h['score'] for h in self.optimization_history[-10:]] score_improvement = (recent_scores[-1] - recent_scores[0]) / recent_scores[0] * 100 if score_improvement > 10: recommendations.append("Optimization is working well. Continue current strategy.") elif score_improvement < -5: recommendations.append("Performance declining. Consider manual review of parameters.") else: recommendations.append("Performance stable. Try more aggressive optimization.") # Parameter-specific recommendations sensitivity = self._analyze_parameter_sensitivity() for param, data in sensitivity.items(): if data['impact'] > 0.5: recommendations.append( f"Parameter '{param}' has high impact. Consider {data['recommendation']}ing it." ) return recommendations

💡 Best Practices Summary

Hardware Optimization

  1. GPU Memory Management: Use 80% of available GPU memory
  2. Mixed Precision: Enable FP16 for 2x performance improvement
  3. Batch Size Optimization: Find optimal batch size for your hardware
  4. Temperature Monitoring: Keep GPU below 80°C for stability

Algorithm Optimization

  1. Ensemble Methods: Use 3-5 models for better quality scores
  2. Cross-validation: Always validate on unseen data
  3. Data Augmentation: Increase training data diversity
  4. Model Calibration: Improve confidence estimates

Task Selection Strategy

  1. Profitability Analysis: Consider reward/time/energy ratios
  2. Hardware Matching: Choose tasks suited to your hardware
  3. Quality Score History: Track performance by task type
  4. Dynamic Adjustment: Adapt strategy based on network conditions

Energy Efficiency

  1. Power Monitoring: Track watts per TOS earned
  2. Optimal Utilization: Balance performance vs. consumption
  3. Thermal Management: Maintain optimal operating temperatures
  4. Scheduling: Run during off-peak electricity hours

🔧 Troubleshooting

Common Performance Issues

Low Quality Scores (< 7.0)

  • Enable ensemble methods
  • Increase cross-validation folds
  • Apply data augmentation
  • Check model calibration

High Power Consumption

  • Reduce GPU memory usage
  • Lower model complexity
  • Enable power limiting
  • Check for memory leaks

Task Selection Problems

  • Analyze historical performance
  • Adjust selection thresholds
  • Review hardware capabilities
  • Monitor network competition

Debug Commands

# Monitor GPU usage nvidia-smi -l 1 # Check memory usage ps aux --sort=-%mem | head # Monitor network traffic iftop # Check disk I/O iotop

🚀 Advanced Strategies

Multi-GPU Setup

# Enable multi-GPU training if torch.cuda.device_count() > 1: model = nn.DataParallel(model) print(f"Using {torch.cuda.device_count()} GPUs")

Custom Model Architectures

  • Implement task-specific optimizations
  • Use knowledge distillation for faster inference
  • Apply neural architecture search (NAS)

Economic Optimization

  • Dynamic task switching based on profitability
  • Pool mining coordination
  • Arbitrage opportunities between task types

Congratulations! 🎉 You’ve now mastered AI-Mining optimization on TOS Network. Your setup should be achieving quality scores above 8.5 while maximizing energy efficiency and earnings.

“Don’t Trust, Verify it” - All optimization results are transparently tracked and verifiable on the TOS Network!

Last updated on